Contents

1

Design Goals
Performance
Pipelining

Control Speculation

Dynamic Scheduling

ECE552: Computer Architecture

Arnav Patil

University of Toronto

10

16

1 Design Goals

e Functional — needs to be correct for what function it supports
e Reliable — does it perform correctly consistently?
e High performance — “fast” is only meaningful in context of a set of important tasks

e Low cost — per unit manufacturing cost (wafer) and cost of making the first chip (mask) and design
cost (huge teams of engineers)

e Low power — energy in and energy out

e Secure — can our design protect important info?

Aside on Security
e Architecture — timing-independent functional behaviour of a computer
e Microarch — implementation techniques to improve performance

e Meltdown — leaks OS kernel memory, fixed

Spectre — leaks memory outside-of-bounds checks and sandboxes.

ECE552 focusses on microarch techniques for performance

— Must understand the ramifications of these technologies

Microprocessor Revolution
e 1980: enough transistors (50k) to put full processor on a single chip

— Fewer inter-chip crossings

— Only 1 mask required now
e Microprocessors created new market segments
e Replaced incumbents in existing segments
e How are growing transistor counts utilized?

— Implicit parallelism

x Extracting implicit instruction-level parallelism (ILP) e.g. pipelining and caching

Deeper pipelining (5-stage pipeline), branch prediction, multiple issue, superscalar
— Dynamic scheduling — out-of-order execution

— Explicit parallelism — supports data- and thread-level parallelism

Coherent caches and synchronization primitives

Application Pull
e Corollary to Moore’s Law — cost halves every 2 years

e Computers are cost-effective for: national defence, enterprise, dept computing, pervasive computing

Application-Specific Chips
e Course mainly focusses on general-purpose CPUs

e Large, profitable, segment of application-specific CPUs

Layers of Abstraction
e Only way of dealing w/ complex systems

— ISA, microarch, systems arch, tech, applications

Instruction Set Architecture
e HW/SW interface, supports OS functions, is a good compiler target
e HW impacts — efficient and parallel implementations

e Good ISA entails abstraction w/o interpretation

Microarchitecture
e RTL design
e Implement instruction set and explicit capabilities
e Iterative process
e Delivering sequential and parallel application

— Deep pipelining, multiple issue
— Dynamic scheduling

— Branch speculation and multi-core

2 Performance

e Must discuss metric to evaluate modern architectures and Moore’s Law effects

— Moore’s Law slowing but had a historical trend

Empirical Evaluation
e Metrics — performance, cost, power, reliability
e Metrics more important in combination than individual

— Performance per cost (MIPS/$)
— Performance per power (MIPS/W)

e Basis for design and purchasing decisions

Performance

e Metrics are latency and throughput

Reporting performance — benchmarking and averaging

CPU performance equation

Latency (execution time) — time required to finish one fixed task

Throughput (bandwidth) — number of tasks completed in a fixed time

e Often contradictory — throughput can exploit parallelism but latency cannot

Choose definition that matches goals (usually this is throughput)

Performance Improvement

e Processor A is X times faster than B if

— Latency(P,A) = Latency(P,B)/X
— Throughput(P,A) = X-Latency(P,B)

Processor A is X% faster than B if

— Latency(P,A) = Latency(P,B)/(1+X/100)
— Throughput(P,A) = Throughput(P,B)-(1+X/100)

What is P in Latency(P,A)?

— Processor executes some program, but which?

Actual target load — accurate, but not profitable, repeatable, overly specific
e Some representative benchmark program

— Portable and repeatable, accurate if benchmark matches intended workload

— But hard to pinpoint problems, may not be exactly what you want to run

Some small microbenchmarks

— Portable and repeatable, easier to run
— Easy to pinpoint problems

— Downside is that microbenchmarks are not representative of the programs you might actually
want to run

Adding/Averaging Performance Metrics
e We can add latencies for P1 and P2 but not throughputs

2

1 1
Throughput(P1,A) + Throughput(P2,A)

Throughput(P1 + P2, A) =

e Same goes for means

— Arithmetic
1
N Z Latency (P)
1
— Harmonic
N
Ziv Throughput(P)
— Geometric

/11 Speedup(P)

Iron Law of Performance

e Multiple aspects of performance, helps to isolate them

Latency(P,A) = S/prog

Instruction Cycle Seconds

X
Program Instruction Cycle

Instructions/program — dynamic instruction count

— Function of program, compilers, ISA

Cycles/instruction — CPI

— Function of program, compilers, ISA, microarch

S/cycle — clock period
— Function of microarch and tech parameters

e For low latency, minimize all three, but they pull against one another

Measuring CPI

e Execution time, CPI

e CPI breakdowns — hardware event counters, cycle-level microarch simulation

Improving CPI
e Course focusses on CPI improvements more so than clock frequency
— Historically clock accounts for 70% of performance
e Now things have changed
— Deep pipelining no longer power-efficient
e Some techniques — caching, speculation, multiprocessing
e Amdahl’s Law — you don’t want to speed up a small fraction of a program to the detriment of the rest

— f — fraction that can be parallely speedup

— 1 — f — fraction that must execute serially

1
Speedup = —————
1-H+%

lim = ——

nooe 1— f

e Pretty good ideal scaling for a modest number of cores

e Large number of cores requires a lot of parallelism

3 Pipelining

Sequential Model

e Implicit model of all modern commercial ISA

Called the von Neumann model, but was implemented in ENIAC beforehand
e Basic feature, the program counter

— Defines total order on dynamic instruction
— Next PC = PC++ unless instruction says so
— Order and named storage defines computation

x Value flows from X to Y via storage element A iff X names A as an output, and Y names A
as an input, and X appears before Y in the total order

Processor logically executes loop

— Instruction execution assumed to be atomic

— Alternatives have been proposed

Datapath — functional units (ALU), registers, memory, interface (data cache)

Cache (decode portion) — muxes, write enables, etc

— Regulate the flow of data in the datapath

— Translates ops into control signals

Breaking Down Instructions

e Instruction Fetch (F)

— Instruction fetched from memory at adder pointed to by PC, then PC does PC++
e Instruction Decode (D)

— Decode instruction to find type
e Execution (X)

— ALU, compute memory addresses, branch update
e Memory Access (M)

— Load and store
e Writeback (W)

— Write instruction result back to registers
e Single-cycle control is hardwired

— Low CPI (exactly 1) but long clock period

— Has to accommodate for the slowest instruction
e Multi-cycle control — micro-programmed/state machine
— Lower clock period but higher CPI

e When breaking into stages — can’t divide evenly

— 11, if not 10 (50/5)

— Due to uneven combinational paths and increased latency through latches
e Latency vs Throughput

— Latency — no good way to make a single instruction go faster

— Throughput — fortunately, we do not care about single instruction latency

e Goal: make whole programs go faster

Pipelining
e Improves instruction throughput over instruction latency
e Begin with the multi-cycle design

— When instruction advances from stage 1 to 2, allow the next instruction to enter stage 1
— Instruction-stage parallelism

— Assume all instructions take some number of stages
e Point is that instructions will enter and exit the processor at a faster rate

— Multiple instructions in-flight simultaneously

Some values like PC, IR have to latched at every stage as multiple instructions in-flight

e Pipeline registers named by stages they separate

Pipeline Control

e One single-cycle controller, but also pipeline the control signals

Terminology and Foreshadowing
e Scalar pipelines — 1 instruction per stage per cycle
e Alternative is superscalar — multiple per stage per clock cycle

e In-order — instructions enter execute stage in program order, alternative is out-of-order

Pipelining Goals
e Balanced — all stages should take roughly the same time

e Doesn’t make sense to optimize any stage that’s not the longest

For in-order pipelining, instruction must pass through all stages and in the same order

Buffering — not all stages take some amount of time
e Independent computations

— No relationship between work units

— Minimize pipeline stalls

Pipeline Performance Calculations
e Why is pipeline CPI > 1 7

— CPI for scalar in-order pipelines is 1+ penalties
— Stalls used to resolve penalties for hazards

* Hazard: condition that jeopardizes sequential illusion
* Stall: pipeline delay introduced by hardware to restore the sequential illusion

e Long penalties are okay if they happen very rarely

e Stall also have implications for ideal number of pipeline stages

Managing a Pipeline
e Proper flow requires pipeline operations
e Operation I: stall

— Effect — stop instruction at current stage
— Usage — make younger instruction wait for other instructions to complete

— Implement — de-assert write enables for pipeline registers
e Operation II: flush

— Effect — remove instruction from current step
— Usage — control (later) so they never appeared

— Implement — assert clear signals and replace with NOOPs

Dependences and Hazards

e Dependence — relationship that serializes two instructions

— Data: 2 instructions use the same value of named storage

— Control: 1 instruction controls when another executes
e Hazards — dependence causes potential incorrect execution

— Possibility of using wrong data/corrupting it

— Can be fixed with stalls for multiple stages

Data Hazards and Dependences
e Three types of data dependences

— Read-after-write (RAW)

— True dependence — value flows through its true dependence, using different output register for
add doesn’t help

RAW: Detect and Stall

e Stall logic in decode stage to detect and stall reader

Same thing for second source register

Reevaluate every cycle until no longer true

Pro: low-cost, simple

Con: IPC degradation, RAW dependencies are common

Main thing it does is deassert write-enable signals

— Also want to stop some values from propagating so we replace w/ NOOPs, called pipeline bubble

Reducing RAW Stalls With Bypassing
e Why wait until W? Data available after X or M

Bypass or forward data directly to input of X or M stage

MX: from beginning of memory to input of X
e WX: from start of W to input of X

e WM: from start of W to input of M

Bypass logic similar to but separate from stall logic

— Complement one another, can’t bypass, must stall

— Stall logic controls latches, bypass logic controls muxes

Write-After-Write Hazard /Dependence

e Compiler effects — scheduling problem, reordering would leave wrong values in registers

Artificial — no value flows through dependence

Eliminate by using different output registers

Pipeline effects — doesn’t affect in-order pipeline w/ single-cycle execute operation

Could have WAW hazard with multicycle

Write-After-Read Hazard /Dependence
e Compiler effects — scheduling problem, reordering
e Artificial — solve by using a different output register name
e Pipeline effects — hazard can’t happen in simple in-order pipeline

— BUT could happen in an out-of-order execution

Data Hazards Summary

e Real instructions have no read-after-read dependence
¢ RAW - true dependence
e WAR - anti-dependence

e WAW - output-dependence

Data hazards are a function of data dependencies and the pipeline

— Potential for executing dependent instructions in the wrong order

— Requires both instructions to be in-flight

Pipelined Functional Units

e Let’s first look at decomposing execute stage

— Fast integer arithmetic and logic operations, 1 cycle
— Slow integer arithmetic and logic operations, 2 cycles

— Floating point, add, multiply, divide take multiple cycles

e How many stages depends on many factors

When we have “long” operations — RAW stalls become more frequent
e WAW hazards now possible if we’re naive about the design

e WAR hazards are not possible anymore as register values always read in decode

Structural Hazards

e When measures are required twice in the same cycle

e Or when instructions and data cache share some structure

Pro: low cost, simple fix
e Con: increases CPI

e To fix, we use a proper ISA and pipelined design

Best to avoid by design, each instruction uses each named structure exactly once for at most 1 cycle
and always in order

Control Hazards

e Pipeline works well when there is no transfer of control

e | always gets the next instruction, but there is a problem is the sequential flow is disrupted

4 Control Speculation

e How to fix control hazards caused by pipeline?

— Option I: always stall at decode once we see it’s a branch

— Option II: assume all branches are not taken, do PC=PC+4, then recover if wrong

10

Control Speculation and Control Recovery
e Speculation — predict branch outcome and recover if the guess is wrong
e Misspeculation recovery — what to do on the wrong guess
e Branch resolves in X — younger instructions in F/D haven’t changed permanent state, so we can flush

F/D and D/X registers

Branch Prediction

e Taken branches more common in loops

e Yield taken/not taken prediction w/ high probability of being right

Big Idea: Speculation

e Speculation — engage in risky transaction on a chance of profit

e Speculative execution — execute before all parameters are known

Correct — avoid stall, improve performance

Incorrect — flush/abort incorrect instruction, must undo changes and RECOVER pre-speculative state

The game: [Ycorrect X gain] > [(1 — Roincorrect) X penalty]

Unknown parameter — are the instructions to execute next correct or not?

Mechanics —

— Guess branch target, start fetching at guessed position
— Execute branch to verify guess

— Don’t write to register or memory until prediction is verified

Dynamic Branch Prediction

e BP Part I — direction predictor

— Applies to conditional branches only, which are hard to predict

— Predict taken or not taken
e BP Part II — target predictor

— Applies to all control transfers

— Supplies target PC

— Done in F stage (or earliest possible in a deep pipeline)
x Determines if instruction is control prior to D stage

— Easy to implement

e Predict in F
— Don’t know if an instruction is a branch but we can disregard our prediction if it’s not
e Direction predictor (DIRP)

— Map conditional-brnach PCs to taken/not-taken decisions

11

Program »| Event > Prediction
Execution Selection Index

< Prediction
Feedback |*) Mechanism

— Difficult to do well

— Individual branches are either weakly-biased or unbiased
e Branch Prediction Buffer (BPB)

— 1-bit predictor, PC indexes table of bits, no tags

— Essentially branch will go same way it went the last time

e We see that the 1-bit predictor changes its mind too easily so we use a two-bit saturating counter
instead

e Force DIRP to mispredict twice before changing state

Storing and Addressing Predictions
e Think of it like memory/cache, but we want to avoid tags
e Aliasing could happen if 24 instructions’ PC accesses the same counter — also under-utilization
— But this is OKAY because we're only making a prediction, the (small) penalty we pay is in

performance

Correlated Branch Behaviour

e 2-bit scheme — small amount of history (local scheme)
e History register — shift in outcome every branch

e Record last k branch outcomes

e Correlated (2-level) predictors

— Exploits observation that branch outcomes are conditional

— Maintains separate prediction per PC or BHR

Correlated Predictors
e Design Choice I — one global BHR or one per PC

— Each captures different kind of behaviour

— Global often better — captures local patterns for tight loops
e Design Choice II — how many history bits (BHR size)?

— Tricky question to answer

— Long BHRs are good for some, shorter ones are better for others

12

— BPB utilization decreased w/ longer BHR — many history patterns end up never seen
e Using PC and BHR allows multiple PCs to dynamically share BPBs

e Long BHRs demand longer training

Two-Level Predictors

8 I
2 @ <
g g S
E Global ‘é c
g —»{ predictor g —P Q
€ table < S
= e =
Qo Q i
o Ke) m
[©) [©)
Private
T e predictor
GAg| table GAp
)) .) &
° Private history ° Private history 2
= c =
o table Global (-—) table (__)
o _r predictor o o
oy = =
e table S 2!
s & g
) @]
Private
predictor
PAg PAp table
Hybrid (Tournament) Predictors
e Attacks correlated predictor BHT utilization pattern
e Idea: combine 2 predictors
— Simple BPB predicts history independent
— Correlated predictor predicts only branches that need history
— Chooser assigns branches to one predictor over the other
— Branches start in simple BPB, more mis-speculation threshold
PC i
R
28] m | o
GHR o " o " O
o0 [oa) S

13

e Lots of direction prediction strategies

— Perceptron based predictions (used in latest AMD processors)

— Further exploration/research in Lab 2

e Also need to predict branch targets

Branch Target Buffer (BTB)
e Need to predict branch target

e Small cache:

IEEL [9:21 |

[13:2]

~{49:10]

-~

[15:10] [13:2] [---.

v o
D

[31:14] [13:2] 1:

l branch? target-PC

e If the cache hits: this is a control instruction and its going to the target PC (if taken)
e If the cache miss: not a control instruction OR never seen before OR evicted
e Why are partial tags ok? Full tags not necessary

— Target PC is just a guess — aliasing is OK

Why Does a BTB Work?
e Control instructions’ targets are stable
e Direct means constant target — indirect means registers target
e More on indirect calls — so MIXED BAG

— (dynamically linked) — yes

— (dynamically dispatched or virtual) — no
e Indirect conditional jumps (conditional statements) — no
e Return instruction? Indirect, so NO, but

e Polymorphism and virtual functions can kill performance

Return Address Stack (RAS)

e Return addresses are easy to predict w/o a BTB

— Return addresses stack call sequence

x Call — push PC+4 into RAS
* Predict for return is RAS[TOS]

e How do we tell if an instruction is a return before decoding?

14

e Attach pre-decode bits to I$

— Written after 1 time the instruction executes

— Useful bits? return

PC
—1s |$ BTB
D
! T
instruction next-PC

e Importance of accuracy increase with depth and width of pipeline
e Basic building block — 2-bit saturating counter

e Predict prediction and target

How Are Interrupts/Exceptions Handled?

Interrupt — external requires control of the processor, e.g. timer, I/O device req

e Exception — internal events so rare that we don’t handle in hardware so we defer in software e.g.
division by 0, page fault, memory protection, violation, illegal instruction

e Can occur at any stage except W

— Page fault — F or M
— Illegal op code — D
— Divide by 0 — X

Upon detecting an interrupt

— OS saves processor state
— Interrupt handling routine

x Abort program
x Corrupt program

Handling Interrupts/Exceptions

e Instructions before i, (i-1, i-2) are currently in pipeline are completed normally

Results get saved

i and instructions after get flushed, converted into NOOPs

Saved PC is PC of i

Called precise state/interrupt

15

Handling Precise Exceptions
e Flag inserted into pipeline register
e Instruction converted into NOOP

e Instruction handled in M/W register as exceptions must be handled in program order and NOT tem-
poral order

e What about 2 in-flight exception?

— Must defer handling interrupts until writeback and force in-order writeback

— Bottom-line: maintaining precise state is important but hard

5 Dynamic Scheduling

e Problem with in-order scheduling — instructions w/ no dependence can’t advance b/c of dependent
instructions are in its way

Static Instruction Scheduling

e Issue: time at which instruction begins its execute stage

Schedule: order in which instruction execute

Scheduling: actively rearranging instructions to enable rapid issue

Static scheduling done by compiler — knows pipeline and program dependencies

Control flow messes with rearranging instructions

E.g. loop unrolling — increases scope for loops

Motivation: Dynamic Scheduling

e AKA out of order execution — break von Neumann order of instruction execution

— Pros: reduce RAW stalls, increase pipeline and functional unit utilization
— Originally for FP utilization

— Expose more opportunities for parallel issue

e BUT it has to look like we never broke the illusion of sequential order

Before We Continue...

e If it can be done in software, why implement in HW?

— Performance portability — don’t want to recompile for new machines
— More information available — memory addresses, branch directions, cache misses

— More registers available — compilers might not have enough to fix WAR and WAW hazards

e Easier to speculate and recover from a mis-speculation

16

Instruction Buffer

reafile

>
»

e Trick: instruction buffer — conceptually a bunch of latches holding instructions
— Gives us our scheduling scope
— Split Decode (D) into 2:

* D1: accumulate decoded instructions into buffer in order
x D2: buffer should send instructions out-of-order to rest of the pipeline

Scheduling Algorithm I: Tomasulo
e Tomasulo’s algorithm — removes WAR/WAW hazards
e Reservations station (RS) — instruction buffer
e Common data bus (CDB) — broadcasts results to RS
e First implementation: IBM 360/91
— Initially only for floating point ops

e We will implement simple — dynamic scheduling for all instruction types

Name Dependence
e 2 instructions use the same register but no data flow
o Anti-dependence — WAR
e Output-dependence — WAW

Register Renaming — In Hardware
e Change register names to eliminate WAR/WAW
e Elegant idea (cache/pipeline)
e Think of registers as names, not physical storage locations

— Can have more locations than names

— Multiple active versions of the same register names

e Map-Table: maps names to most recent locations

17

SRAM indexed by name

On a write — allocate a new location, note mapping in the table

On a read — find storage location of most recent version via map-table lookup

Detail — must deallocate locations once we’re done

e Renaming should remove WAR/WAW dependences and leave RAW dependences intact

l-cache
\mgs I-fetch
1 ¥ I { tags
instructio
inteper fetch FRONT-END
regifters queue FP registdrs
I-decode
dispatch
AKA “RESERVATION
< T A 4 T) T A 4 S STATIONS” IN ORIGINAL
TOMASULO
L 7 A - & - CDB
integer memo floating-point
g ry g-p P
BACK-END
1SS iSSuY™ tags
integer
brafich I AGU I I FP |
| coe] 4 value + tag R
< vy »
Load Store
queue 7 queue
v L 2

Tomasulo Data Structures

e Reservation station (RS)

— stores FU, busy, op
— Vj, Vi, — source register value, captured when entering the RS

— Qj, Qi — source register tags (RS# of RS that will eventually produce that support)
e Map-table — implemented as RS# that will write into that register
e Common Data Bus — broadcasts <RS#, value>
e Tags implemented as ready-bits

— Tag = 0 — value is ready
— Tag != 0 — value is not ready, watch for CBD broadcasts of that tag

18

New Pipeline - F D S X W

e Fetch — same as before
e Dispatch

— Stalls for structural hazard — is the target RS for that instruction full?
— Input data ready? If tag bits are 0, we can read the value into the RS
* Else, if not ready (tag != 0), can read value into the RS
— Set register status (update Map Table) — rename output reg to new physical location RS#

o Issue

— Wait for RAW hazards and structural hazards

— If not busy and all inputs are ready, will read values from RS and send them to execute

Execute

— Combined w/ memory, do the same as before
e Writeback

— Wait for structural hazard (CDB)
— If CBD available, output register

* Does output register status still match (tag status)?
x If yes, clear the tag and write value to register file

— Do any instructions in any RS care about this result?
x If they match once broadcast on CBD, clear tag and copy value
e Remember, this can all happen simultaneously, not mutually exclusive
e Wait vs. stall, stall propagates to younger issues, but a wait only holds up that instruction and doesn’t

affect younger ones behind it

Value/Copy-Based Register Renaming
e Tomasulo-based register-renaming
— Called “value-based” or “copy-based”
— Names — architectural registers

— Storage locations — register files and RS’s

Values can (& do) exist in both

Register files hold most recent values

RS versioning eliminate WAR, hazards

Storage locations referred to internally by RS# tags

— Map table translates names to tags
— Tag = 0, value is in the register file
— Tag != 0, value is not ready and is being computed by RS#

— CDB broadcasts value w/ tags attached so instructions know what value they are looking for

This means we can have multiple loads outstanding

19

e Issue: wait for RAW hazards, and if none, then will read values from entry and sent to functional unit

If an instruction needs to read the register file in the same cycle a value is written back to the regfile
& RS, we can assume internal forwarding

e Similar to W-D internal forwarding in the basic pipeline

Check values being written back on CDB first, then instruction and dispatch in the second half of the
cycle

e Promise kept! In-order dispatch, out-of-order execution and completion

Tomasulo Summary

e Instruction buffer/RS — stall in D — structural hazard
e Functional unit — wait in S — structural
e RAW — wait in S

e WAR - none - fixed by renaming, same goes for WAW

Dynamic Scheduling as Loop Unrolling

e Combine iteration — implement i and i+1, increment by i+2, more flexible

Pipeline schedule — reduce impact of RAW hazards

e Rename registers — rename to fix any WAR/WAW hazards, may come from reordering
e Renamings set up a data flow graph

e Say an instruction is writing to a nonzero tag in the register file

— Will simply overwrite tag, result of first load will never be written to reg file
— Architecturally this is OKAY!!

Branches
e 2 options wrt how branches are dealt with

— No speculation — branch must be resolved before younger instructions can writeback

— Must have a way to recover from a mis-speculation

e An assumption — we can issue the same cycle as we see a tag match on the CDB

Say both multiply RSs are used, then we can’t add the 3rd multiply to RS

— Structural hazard that results in a stall
— Stall because it propagates backwards to younger instructions

— This is why we can use instruction queues instead of just fetch stage

Usually if there’s 2 or more instructions need to use the CDB in the same cycle, we would prioritize
older instructions

Summary — Tomasulo’s Algorithm can overlap loop iterations

20

Why Can Tomasulo Overlap Iterations?
e Register renaming — multiple iterations use different physical destinations for registers
e Dynamic loop unrolling
e Reservation stations — buffer old values of registers, and avoid WAR hazards

e Tomasulo builds a data flow dependency graph on the fly

Two Major Advantages

e Distribution of hazard detection logic

— Distributed reservation stations and CDB

— If multple instructions are waiting on a single result, and each has operands, then they can be
issued simultaneously be issued once the result is broadcast on the CDB

Dynamic Scheduling Summary
e Decreasing CPI by increasing throughput (IPC)
— Higher pipeline/FU utilization
e Split decode into dispatch + issue

e Tomasulo — copy-based register renaming, full out-of-order execution

Precise State and Speculation

e Register renaming now — true renaming + ROB

Speculation and Precise Interrupts

e Sequential semantics for interrupts

— All instructions before interrupt should complete and all instructions after should look like they
never started

— Same for branches!

— Precise interrupts return to a precise state
e What makes precise interrupts difficult?

— Undo post-interrupt (by extension, branches) writeback

— Not an issue in-order processors as branches complete before younger instructions writeback

Precise State

e Speculative execution requires ability to abort and restart at every branch

e Precise synchronous (prog-internal) interrupts require ability to abort and restart at every load, store,
div, etc.

— “Exceptions”
e Precise asynchronous (external) interrupts require ability to abort and restart at every instruction

e Ergo, we should implement ability to abort and restart at every instruction

21

— This is called a precise state

e Problem with precise state — writeback combines two separate functions

— Forwards values to younger instructions — ok if OoO
— Writing values to the architectural registers
* Want this to be in-order
e We saw similar problems with decode for OoO execution

— Solution: split decode into in-order and dispatch and OoO issue

Reorder Buffer (ROB)
e Conceptually, the ROB is a FIFO queue containing:

— Flag indication completion

— New and old register mapping

Reorder buffer (ROB)

D
I S S

e Instruction buffer — reorder buffer

e Conceptually, buffers completed results en route to the register file

e Split writeback into two stages
— Complete (C) — completed item writes result into physical register file, wait doesn’t backpropagate

— Retire (R) — aka commit, graduate — RoB returns to old value to free list, happens in-order

x Could be a stall if ROB queue filled up

Load/Store Queue (LSQ)

e ROB makes register writes in-order, what about stores?

— As usual? i.e., do D$ in execute — NO!!!!

ROB

45

|

load data

store data

addr. DS

load/store

22

	Design Goals
	Performance
	Pipelining
	Control Speculation
	Dynamic Scheduling

