
ECE552: Computer Architecture

Arnav Patil

University of Toronto

Contents

1 Design Goals 2

2 Performance 3

3 Pipelining 6

4 Control Speculation 10

5 Dynamic Scheduling 16

1



1 Design Goals

• Functional – needs to be correct for what function it supports

• Reliable – does it perform correctly consistently?

• High performance – “fast” is only meaningful in context of a set of important tasks

• Low cost – per unit manufacturing cost (wafer) and cost of making the first chip (mask) and design
cost (huge teams of engineers)

• Low power – energy in and energy out

• Secure – can our design protect important info?

Aside on Security

• Architecture – timing-independent functional behaviour of a computer

• Microarch – implementation techniques to improve performance

• Meltdown – leaks OS kernel memory, fixed

• Spectre – leaks memory outside-of-bounds checks and sandboxes.

• ECE552 focusses on microarch techniques for performance

– Must understand the ramifications of these technologies

Microprocessor Revolution

• 1980: enough transistors (50k) to put full processor on a single chip

– Fewer inter-chip crossings

– Only 1 mask required now

• Microprocessors created new market segments

• Replaced incumbents in existing segments

• How are growing transistor counts utilized?

– Implicit parallelism

∗ Extracting implicit instruction-level parallelism (ILP) e.g. pipelining and caching

– Deeper pipelining (5-stage pipeline), branch prediction, multiple issue, superscalar

– Dynamic scheduling – out-of-order execution

– Explicit parallelism – supports data- and thread-level parallelism

– Coherent caches and synchronization primitives

Application Pull

• Corollary to Moore’s Law – cost halves every 2 years

• Computers are cost-effective for: national defence, enterprise, dept computing, pervasive computing

Application-Specific Chips

• Course mainly focusses on general-purpose CPUs

• Large, profitable, segment of application-specific CPUs

2



Layers of Abstraction

• Only way of dealing w/ complex systems

– ISA, microarch, systems arch, tech, applications

Instruction Set Architecture

• HW/SW interface, supports OS functions, is a good compiler target

• HW impacts – efficient and parallel implementations

• Good ISA entails abstraction w/o interpretation

Microarchitecture

• RTL design

• Implement instruction set and explicit capabilities

• Iterative process

• Delivering sequential and parallel application

– Deep pipelining, multiple issue

– Dynamic scheduling

– Branch speculation and multi-core

2 Performance

• Must discuss metric to evaluate modern architectures and Moore’s Law effects

– Moore’s Law slowing but had a historical trend

Empirical Evaluation

• Metrics – performance, cost, power, reliability

• Metrics more important in combination than individual

– Performance per cost (MIPS/$)
– Performance per power (MIPS/W)

• Basis for design and purchasing decisions

Performance

• Metrics are latency and throughput

• Reporting performance – benchmarking and averaging

• CPU performance equation

• Latency (execution time) – time required to finish one fixed task

• Throughput (bandwidth) – number of tasks completed in a fixed time

• Often contradictory – throughput can exploit parallelism but latency cannot

• Choose definition that matches goals (usually this is throughput)

3



Performance Improvement

• Processor A is X times faster than B if

– Latency(P,A) = Latency(P,B)/X

– Throughput(P,A) = X·Latency(P,B)

• Processor A is X% faster than B if

– Latency(P,A) = Latency(P,B)/(1+X/100)

– Throughput(P,A) = Throughput(P,B)·(1+X/100)

• What is P in Latency(P,A)?

– Processor executes some program, but which?

• Actual target load – accurate, but not profitable, repeatable, overly specific

• Some representative benchmark program

– Portable and repeatable, accurate if benchmark matches intended workload

– But hard to pinpoint problems, may not be exactly what you want to run

• Some small microbenchmarks

– Portable and repeatable, easier to run

– Easy to pinpoint problems

– Downside is that microbenchmarks are not representative of the programs you might actually
want to run

Adding/Averaging Performance Metrics

• We can add latencies for P1 and P2 but not throughputs

Throughput(P1 + P2, A) =
2

1
Throughput(P1,A) +

1
Throughput(P2,A)

• Same goes for means

– Arithmetic

1

N

N∑
1

Latency(P )

– Harmonic
N∑N

1 Throughput(P )

– Geometric
N

√
ΠN

1 Speedup(P)

4



Iron Law of Performance

• Multiple aspects of performance, helps to isolate them

• Latency(P,A) = S/prog

Instruction

Program
× Cycle

Instruction
× Seconds

Cycle

• Instructions/program – dynamic instruction count

– Function of program, compilers, ISA

• Cycles/instruction – CPI

– Function of program, compilers, ISA, microarch

• S/cycle – clock period

– Function of microarch and tech parameters

• For low latency, minimize all three, but they pull against one another

Measuring CPI

• Execution time, CPI

• CPI breakdowns – hardware event counters, cycle-level microarch simulation

Improving CPI

• Course focusses on CPI improvements more so than clock frequency

– Historically clock accounts for 70% of performance

• Now things have changed

– Deep pipelining no longer power-efficient

• Some techniques – caching, speculation, multiprocessing

• Amdahl’s Law – you don’t want to speed up a small fraction of a program to the detriment of the rest

– f – fraction that can be parallely speedup

– 1− f – fraction that must execute serially

Speedup =
1

(1− f) + f
N

lim
n→∞

=
1

1− f

• Pretty good ideal scaling for a modest number of cores

• Large number of cores requires a lot of parallelism

5



3 Pipelining

Sequential Model

• Implicit model of all modern commercial ISA

• Called the von Neumann model, but was implemented in ENIAC beforehand

• Basic feature, the program counter

– Defines total order on dynamic instruction

– Next PC = PC++ unless instruction says so

– Order and named storage defines computation

∗ Value flows from X to Y via storage element A iff X names A as an output, and Y names A
as an input, and X appears before Y in the total order

• Processor logically executes loop

– Instruction execution assumed to be atomic

– Alternatives have been proposed

• Datapath – functional units (ALU), registers, memory, interface (data cache)

• Cache (decode portion) – muxes, write enables, etc

– Regulate the flow of data in the datapath

– Translates ops into control signals

Breaking Down Instructions

• Instruction Fetch (F)

– Instruction fetched from memory at adder pointed to by PC, then PC does PC++

• Instruction Decode (D)

– Decode instruction to find type

• Execution (X)

– ALU, compute memory addresses, branch update

• Memory Access (M)

– Load and store

• Writeback (W)

– Write instruction result back to registers

• Single-cycle control is hardwired

– Low CPI (exactly 1) but long clock period

– Has to accommodate for the slowest instruction

• Multi-cycle control – micro-programmed/state machine

– Lower clock period but higher CPI

• When breaking into stages – can’t divide evenly

6



– 11, if not 10 (50/5)

– Due to uneven combinational paths and increased latency through latches

• Latency vs Throughput

– Latency – no good way to make a single instruction go faster

– Throughput – fortunately, we do not care about single instruction latency

• Goal: make whole programs go faster

Pipelining

• Improves instruction throughput over instruction latency

• Begin with the multi-cycle design

– When instruction advances from stage 1 to 2, allow the next instruction to enter stage 1

– Instruction-stage parallelism

– Assume all instructions take some number of stages

• Point is that instructions will enter and exit the processor at a faster rate

– Multiple instructions in-flight simultaneously

• Some values like PC, IR have to latched at every stage as multiple instructions in-flight

• Pipeline registers named by stages they separate

Pipeline Control

• One single-cycle controller, but also pipeline the control signals

Terminology and Foreshadowing

• Scalar pipelines – 1 instruction per stage per cycle

• Alternative is superscalar – multiple per stage per clock cycle

• In-order – instructions enter execute stage in program order, alternative is out-of-order

Pipelining Goals

• Balanced – all stages should take roughly the same time

• Doesn’t make sense to optimize any stage that’s not the longest

• For in-order pipelining, instruction must pass through all stages and in the same order

• Buffering – not all stages take some amount of time

• Independent computations

– No relationship between work units

– Minimize pipeline stalls

7



Pipeline Performance Calculations

• Why is pipeline CPI > 1 ?

– CPI for scalar in-order pipelines is 1+ penalties

– Stalls used to resolve penalties for hazards

∗ Hazard: condition that jeopardizes sequential illusion

∗ Stall: pipeline delay introduced by hardware to restore the sequential illusion

• Long penalties are okay if they happen very rarely

• Stall also have implications for ideal number of pipeline stages

Managing a Pipeline

• Proper flow requires pipeline operations

• Operation I: stall

– Effect – stop instruction at current stage

– Usage – make younger instruction wait for other instructions to complete

– Implement – de-assert write enables for pipeline registers

• Operation II: flush

– Effect – remove instruction from current step

– Usage – control (later) so they never appeared

– Implement – assert clear signals and replace with NOOPs

Dependences and Hazards

• Dependence – relationship that serializes two instructions

– Data: 2 instructions use the same value of named storage

– Control: 1 instruction controls when another executes

• Hazards – dependence causes potential incorrect execution

– Possibility of using wrong data/corrupting it

– Can be fixed with stalls for multiple stages

Data Hazards and Dependences

• Three types of data dependences

– Read-after-write (RAW)

– True dependence – value flows through its true dependence, using different output register for
add doesn’t help

8



RAW: Detect and Stall

• Stall logic in decode stage to detect and stall reader

• Same thing for second source register

• Reevaluate every cycle until no longer true

• Pro: low-cost, simple

• Con: IPC degradation, RAW dependencies are common

• Main thing it does is deassert write-enable signals

– Also want to stop some values from propagating so we replace w/ NOOPs, called pipeline bubble

Reducing RAW Stalls With Bypassing

• Why wait until W? Data available after X or M

• Bypass or forward data directly to input of X or M stage

• MX: from beginning of memory to input of X

• WX: from start of W to input of X

• WM: from start of W to input of M

• Bypass logic similar to but separate from stall logic

– Complement one another, can’t bypass, must stall

– Stall logic controls latches, bypass logic controls muxes

Write-After-Write Hazard/Dependence

• Compiler effects – scheduling problem, reordering would leave wrong values in registers

• Artificial – no value flows through dependence

• Eliminate by using different output registers

• Pipeline effects – doesn’t affect in-order pipeline w/ single-cycle execute operation

• Could have WAW hazard with multicycle

Write-After-Read Hazard/Dependence

• Compiler effects – scheduling problem, reordering

• Artificial – solve by using a different output register name

• Pipeline effects – hazard can’t happen in simple in-order pipeline

– BUT could happen in an out-of-order execution

9



Data Hazards Summary

• Real instructions have no read-after-read dependence

• RAW – true dependence

• WAR – anti-dependence

• WAW – output-dependence

• Data hazards are a function of data dependencies and the pipeline

– Potential for executing dependent instructions in the wrong order

– Requires both instructions to be in-flight

Pipelined Functional Units

• Let’s first look at decomposing execute stage

– Fast integer arithmetic and logic operations, 1 cycle

– Slow integer arithmetic and logic operations, 2 cycles

– Floating point, add, multiply, divide take multiple cycles

• How many stages depends on many factors

• When we have “long” operations – RAW stalls become more frequent

• WAW hazards now possible if we’re naive about the design

• WAR hazards are not possible anymore as register values always read in decode

Structural Hazards

• When measures are required twice in the same cycle

• Or when instructions and data cache share some structure

• Pro: low cost, simple fix

• Con: increases CPI

• To fix, we use a proper ISA and pipelined design

• Best to avoid by design, each instruction uses each named structure exactly once for at most 1 cycle
and always in order

Control Hazards

• Pipeline works well when there is no transfer of control

• F always gets the next instruction, but there is a problem is the sequential flow is disrupted

4 Control Speculation

• How to fix control hazards caused by pipeline?

– Option I: always stall at decode once we see it’s a branch

– Option II: assume all branches are not taken, do PC=PC+4, then recover if wrong

10



Control Speculation and Control Recovery

• Speculation – predict branch outcome and recover if the guess is wrong

• Misspeculation recovery – what to do on the wrong guess

• Branch resolves in X – younger instructions in F/D haven’t changed permanent state, so we can flush
F/D and D/X registers

Branch Prediction

• Taken branches more common in loops

• Yield taken/not taken prediction w/ high probability of being right

Big Idea: Speculation

• Speculation – engage in risky transaction on a chance of profit

• Speculative execution – execute before all parameters are known

• Correct – avoid stall, improve performance

• Incorrect – flush/abort incorrect instruction, must undo changes and RECOVER pre-speculative state

• The game: [%correct × gain] > [(1−%incorrect)× penalty]

• Unknown parameter – are the instructions to execute next correct or not?

• Mechanics –

– Guess branch target, start fetching at guessed position

– Execute branch to verify guess

– Don’t write to register or memory until prediction is verified

Dynamic Branch Prediction

• BP Part I – direction predictor

– Applies to conditional branches only, which are hard to predict

– Predict taken or not taken

• BP Part II – target predictor

– Applies to all control transfers

– Supplies target PC

– Done in F stage (or earliest possible in a deep pipeline)

∗ Determines if instruction is control prior to D stage

– Easy to implement

• Predict in F

– Don’t know if an instruction is a branch but we can disregard our prediction if it’s not

• Direction predictor (DIRP)

– Map conditional-brnach PCs to taken/not-taken decisions

11



– Difficult to do well

– Individual branches are either weakly-biased or unbiased

• Branch Prediction Buffer (BPB)

– 1-bit predictor, PC indexes table of bits, no tags

– Essentially branch will go same way it went the last time

• We see that the 1-bit predictor changes its mind too easily so we use a two-bit saturating counter
instead

• Force DIRP to mispredict twice before changing state

Storing and Addressing Predictions

• Think of it like memory/cache, but we want to avoid tags

• Aliasing could happen if 2+ instructions’ PC accesses the same counter – also under-utilization

– But this is OKAY because we’re only making a prediction, the (small) penalty we pay is in
performance

Correlated Branch Behaviour

• 2-bit scheme – small amount of history (local scheme)

• History register – shift in outcome every branch

• Record last k branch outcomes

• Correlated (2-level) predictors

– Exploits observation that branch outcomes are conditional

– Maintains separate prediction per PC or BHR

Correlated Predictors

• Design Choice I – one global BHR or one per PC

– Each captures different kind of behaviour

– Global often better – captures local patterns for tight loops

• Design Choice II – how many history bits (BHR size)?

– Tricky question to answer

– Long BHRs are good for some, shorter ones are better for others

12



– BPB utilization decreased w/ longer BHR – many history patterns end up never seen

• Using PC and BHR allows multiple PCs to dynamically share BPBs

• Long BHRs demand longer training

Two-Level Predictors

Hybrid (Tournament) Predictors

• Attacks correlated predictor BHT utilization pattern

• Idea: combine 2 predictors

– Simple BPB predicts history independent

– Correlated predictor predicts only branches that need history

– Chooser assigns branches to one predictor over the other

– Branches start in simple BPB, more mis-speculation threshold

13



• Lots of direction prediction strategies

– Perceptron based predictions (used in latest AMD processors)

– Further exploration/research in Lab 2

• Also need to predict branch targets

Branch Target Buffer (BTB)

• Need to predict branch target

• Small cache:

• If the cache hits: this is a control instruction and its going to the target PC (if taken)

• If the cache miss: not a control instruction OR never seen before OR evicted

• Why are partial tags ok? Full tags not necessary

– Target PC is just a guess – aliasing is OK

Why Does a BTB Work?

• Control instructions’ targets are stable

• Direct means constant target – indirect means registers target

• More on indirect calls – so MIXED BAG

– (dynamically linked) – yes

– (dynamically dispatched or virtual) – no

• Indirect conditional jumps (conditional statements) – no

• Return instruction? Indirect, so NO, but

• Polymorphism and virtual functions can kill performance

Return Address Stack (RAS)

• Return addresses are easy to predict w/o a BTB

– Return addresses stack call sequence

∗ Call – push PC+4 into RAS

∗ Predict for return is RAS[TOS]

• How do we tell if an instruction is a return before decoding?

14



• Attach pre-decode bits to I$

– Written after 1 time the instruction executes

– Useful bits? return

• Importance of accuracy increase with depth and width of pipeline

• Basic building block – 2-bit saturating counter

• Predict prediction and target

How Are Interrupts/Exceptions Handled?

• Interrupt – external requires control of the processor, e.g. timer, I/O device req

• Exception – internal events so rare that we don’t handle in hardware so we defer in software e.g.
division by 0, page fault, memory protection, violation, illegal instruction

• Can occur at any stage except W

– Page fault – F or M

– Illegal op code – D

– Divide by 0 – X

• Upon detecting an interrupt

– OS saves processor state

– Interrupt handling routine

∗ Abort program

∗ Corrupt program

Handling Interrupts/Exceptions

• Instructions before i, (i-1, i-2) are currently in pipeline are completed normally

• Results get saved

• i and instructions after get flushed, converted into NOOPs

• Saved PC is PC of i

• Called precise state/interrupt

15



Handling Precise Exceptions

• Flag inserted into pipeline register

• Instruction converted into NOOP

• Instruction handled in M/W register as exceptions must be handled in program order and NOT tem-
poral order

• What about 2 in-flight exception?

– Must defer handling interrupts until writeback and force in-order writeback

– Bottom-line: maintaining precise state is important but hard

5 Dynamic Scheduling

• Problem with in-order scheduling – instructions w/ no dependence can’t advance b/c of dependent
instructions are in its way

Static Instruction Scheduling

• Issue: time at which instruction begins its execute stage

• Schedule: order in which instruction execute

• Scheduling: actively rearranging instructions to enable rapid issue

• Static scheduling done by compiler – knows pipeline and program dependencies

• Control flow messes with rearranging instructions

• E.g. loop unrolling – increases scope for loops

Motivation: Dynamic Scheduling

• AKA out of order execution – break von Neumann order of instruction execution

– Pros: reduce RAW stalls, increase pipeline and functional unit utilization

– Originally for FP utilization

– Expose more opportunities for parallel issue

• BUT it has to look like we never broke the illusion of sequential order

Before We Continue...

• If it can be done in software, why implement in HW?

– Performance portability – don’t want to recompile for new machines

– More information available – memory addresses, branch directions, cache misses

– More registers available – compilers might not have enough to fix WAR and WAW hazards

• Easier to speculate and recover from a mis-speculation

16



Instruction Buffer

• Trick: instruction buffer – conceptually a bunch of latches holding instructions

– Gives us our scheduling scope

– Split Decode (D) into 2:

∗ D1: accumulate decoded instructions into buffer in order

∗ D2: buffer should send instructions out-of-order to rest of the pipeline

Scheduling Algorithm I: Tomasulo

• Tomasulo’s algorithm – removes WAR/WAW hazards

• Reservations station (RS) – instruction buffer

• Common data bus (CDB) – broadcasts results to RS

• First implementation: IBM 360/91

– Initially only for floating point ops

• We will implement simple – dynamic scheduling for all instruction types

Name Dependence

• 2 instructions use the same register but no data flow

• Anti-dependence – WAR

• Output-dependence – WAW

Register Renaming – In Hardware

• Change register names to eliminate WAR/WAW

• Elegant idea (cache/pipeline)

• Think of registers as names, not physical storage locations

– Can have more locations than names

– Multiple active versions of the same register names

• Map-Table: maps names to most recent locations

17



• SRAM indexed by name

• On a write – allocate a new location, note mapping in the table

• On a read – find storage location of most recent version via map-table lookup

• Detail – must deallocate locations once we’re done

• Renaming should remove WAR/WAW dependences and leave RAW dependences intact

Tomasulo Data Structures

• Reservation station (RS)

– stores FU, busy, op

– Vj , Vk – source register value, captured when entering the RS

– Qj , Qk – source register tags (RS# of RS that will eventually produce that support)

• Map-table – implemented as RS# that will write into that register

• Common Data Bus – broadcasts <RS#, value>

• Tags implemented as ready-bits

– Tag = 0 – value is ready

– Tag != 0 – value is not ready, watch for CBD broadcasts of that tag

18



New Pipeline – F D S X W

• Fetch – same as before

• Dispatch

– Stalls for structural hazard – is the target RS for that instruction full?

– Input data ready? If tag bits are 0, we can read the value into the RS

∗ Else, if not ready (tag != 0), can read value into the RS

– Set register status (update Map Table) – rename output reg to new physical location RS#

• Issue

– Wait for RAW hazards and structural hazards

– If not busy and all inputs are ready, will read values from RS and send them to execute

• Execute

– Combined w/ memory, do the same as before

• Writeback

– Wait for structural hazard (CDB)

– If CBD available, output register

∗ Does output register status still match (tag status)?

∗ If yes, clear the tag and write value to register file

– Do any instructions in any RS care about this result?

∗ If they match once broadcast on CBD, clear tag and copy value

• Remember, this can all happen simultaneously, not mutually exclusive

• Wait vs. stall, stall propagates to younger issues, but a wait only holds up that instruction and doesn’t
affect younger ones behind it

Value/Copy-Based Register Renaming

• Tomasulo-based register-renaming

– Called “value-based” or “copy-based”

– Names – architectural registers

– Storage locations – register files and RS’s

– Values can (& do) exist in both

• Register files hold most recent values

• RS versioning eliminate WAR hazards

• Storage locations referred to internally by RS# tags

– Map table translates names to tags

– Tag = 0, value is in the register file

– Tag != 0, value is not ready and is being computed by RS#

– CDB broadcasts value w/ tags attached so instructions know what value they are looking for

• This means we can have multiple loads outstanding

19



• Issue: wait for RAW hazards, and if none, then will read values from entry and sent to functional unit

• If an instruction needs to read the register file in the same cycle a value is written back to the regfile
& RS, we can assume internal forwarding

• Similar to W-D internal forwarding in the basic pipeline

• Check values being written back on CDB first, then instruction and dispatch in the second half of the
cycle

• Promise kept! In-order dispatch, out-of-order execution and completion

Tomasulo Summary

• Instruction buffer/RS – stall in D – structural hazard

• Functional unit – wait in S – structural

• RAW – wait in S

• WAR – none – fixed by renaming, same goes for WAW

Dynamic Scheduling as Loop Unrolling

• Combine iteration – implement i and i+1, increment by i+2, more flexible

• Pipeline schedule – reduce impact of RAW hazards

• Rename registers – rename to fix any WAR/WAW hazards, may come from reordering

• Renamings set up a data flow graph

• Say an instruction is writing to a nonzero tag in the register file

– Will simply overwrite tag, result of first load will never be written to reg file

– Architecturally this is OKAY!!

Branches

• 2 options wrt how branches are dealt with

– No speculation – branch must be resolved before younger instructions can writeback

– Must have a way to recover from a mis-speculation

• An assumption – we can issue the same cycle as we see a tag match on the CDB

• Say both multiply RSs are used, then we can’t add the 3rd multiply to RS

– Structural hazard that results in a stall

– Stall because it propagates backwards to younger instructions

– This is why we can use instruction queues instead of just fetch stage

• Usually if there’s 2 or more instructions need to use the CDB in the same cycle, we would prioritize
older instructions

• Summary – Tomasulo’s Algorithm can overlap loop iterations

20



Why Can Tomasulo Overlap Iterations?

• Register renaming – multiple iterations use different physical destinations for registers

• Dynamic loop unrolling

• Reservation stations – buffer old values of registers, and avoid WAR hazards

• Tomasulo builds a data flow dependency graph on the fly

Two Major Advantages

• Distribution of hazard detection logic

– Distributed reservation stations and CDB

– If multple instructions are waiting on a single result, and each has operands, then they can be
issued simultaneously be issued once the result is broadcast on the CDB

Dynamic Scheduling Summary

• Decreasing CPI by increasing throughput (IPC)

– Higher pipeline/FU utilization

• Split decode into dispatch + issue

• Tomasulo – copy-based register renaming, full out-of-order execution

Precise State and Speculation

• Register renaming now – true renaming + ROB

Speculation and Precise Interrupts

• Sequential semantics for interrupts

– All instructions before interrupt should complete and all instructions after should look like they
never started

– Same for branches!

– Precise interrupts return to a precise state

• What makes precise interrupts difficult?

– Undo post-interrupt (by extension, branches) writeback

– Not an issue in-order processors as branches complete before younger instructions writeback

Precise State

• Speculative execution requires ability to abort and restart at every branch

• Precise synchronous (prog-internal) interrupts require ability to abort and restart at every load, store,
div, etc.

– “Exceptions”

• Precise asynchronous (external) interrupts require ability to abort and restart at every instruction

• Ergo, we should implement ability to abort and restart at every instruction

21



– This is called a precise state

• Problem with precise state – writeback combines two separate functions

– Forwards values to younger instructions – ok if OoO

– Writing values to the architectural registers

∗ Want this to be in-order

• We saw similar problems with decode for OoO execution

– Solution: split decode into in-order and dispatch and OoO issue

Reorder Buffer (ROB)

• Conceptually, the ROB is a FIFO queue containing:

– Flag indication completion

– New and old register mapping

• Instruction buffer – reorder buffer

• Conceptually, buffers completed results en route to the register file

• Split writeback into two stages

– Complete (C) – completed item writes result into physical register file, wait doesn’t backpropagate

– Retire (R) – aka commit, graduate – RoB returns to old value to free list, happens in-order

∗ Could be a stall if ROB queue filled up

Load/Store Queue (LSQ)

• ROB makes register writes in-order, what about stores?

– As usual? i.e., do D$ in execute – NO!!!!

22


	Design Goals
	Performance
	Pipelining
	Control Speculation
	Dynamic Scheduling

