ECE344: Operating Systems

Arnav Patil

University of Toronto

Contents

1 Introduction

2 The Kernel

3 Libraries

4 Process Creation

5 Process Management

6 Basic IPC

7 Process Practice

8 Subprocesses

9 Basic Scheduling

10 Advanced Scheduling

11 Virtual Memory

12 Page Tables

13 Page Table Implementation
14 Virtal Memory Lab Primer

15 Priority Scheduling and Memory Mapping

11

12

13

14

15

1 Introduction

e Any software that gets written either:

— is the operating system, or

— interacts with the operating system.
e The OS as a resource manager:

— allows multiple programs to execute at the same time

— manages/protects memory, IO devices, etc

Three Core OS Concepts

e Virtualization — share a memory /resource by mimicking multiple independent copies
e Concurrency — handles multiple things happening

e Persistence — retains data consistency w/o power

2 The Kernel

The OS provides the illusion that each program has full access to all resources — on its own machine

Called virtualization because one physical machine but illusion of multiple virtual machines

Kernel mode is a privilege level on a CPU that gives access to more instructions

— Different architectures call it different things

— Instructions allow only trusted SW to interact with the HW
e Program — file containing instructions and data

e Process — instance of a process being executed

User mode > supervisor > hypervisor > machine

System Calls
e Transitions b/w user and kernel mode, OS API

— Create/destroy threads, allocate/deallocate memory, etc.

e API — abstracts details and describes arguments and return value of a function

ABI — specifies details, specifically how to pass arguments and where the return value is
e E.g. say a program calls read ()

— Execution goes via library and issues ‘heap’
— Trap invokes the kernel which accesses the disk

— Kernel returns the results to the program

The kernel is a long, constantly running program

— Link using libraries, there’s no main()
— Lets you load code (modules)

— Code executes on-demand

If you write a kernel module, you can execute privileged instructions

Monolithic kernels have less features in user mode, microlithic kernels have more

Hybrid kernels are between monolithic and microlithic

Nano/pico kernels have even more features in user mode

ISAs — x86/64 (amd64), arm64 (aarch64), riscv

File Descriptors
e [PC — inter-process communication is trasferring data between processes

e File descriptor — resource that uses read/write (stores as an index)

3 Libraries

e Libraries are used as part of the OS
e Apps may pass through multiple layers of libraries

e An OS consists of the kernel and libraries required for your applications

Dynamic Libraries Are For Reusable Code
e C standard library is a dynamic library (.so) like any other on the system
— Collection of .o files containing function definitions

e OS loads 1ibc.so in memory only once during boot

Static vs Dynamic Libraries
e Drawbacks to static:

— Statically linking prevents re-using libraries

— Any updates to a static library requires the executable to be recompiled

Dynamic Library Updates Can Break Executables
e A dynamic library update may subtly break an ABI causing a crash
e structs are laid out in memory w/ the fields matching the order of declaration
e Semantic versioning meets developer’s expectations

— Given a version number MAJOR.MINOR.PATCH increment:
* MAJOR when you make incompatible API/ABI changes
* MINOR when you add functionality in a backwards compatible manner
x PATCH when you make backwards compatible bug fixes

4 Process Creation

e Process is a running instance of a program

— Virtual registers
— Virtual memory

— File descriptors — an array of numbers that points to files that the kernel is managing

Process Control Blocks

In Linux this is the task_struct

Contains process state, CPU registers, scheduling, memory management, IO status info
Each process gets a unique PID assigned to it

We can read processes using the proc filesystem

— /proc doesn’t contain real files, but we can use it as such

— Every directory that’s a number is a currently running process (PID)
Windows — we load program into memory and create the PCB

Linux — decomposes process creation into more flexible abstractions

Cloning a Process

5

Pause currently running process, copy its PCB into a new one. This reuses all info from the old process,
including variables

Distinguished by a parent-child relationship
int fork(void) creates a new process. Returns:

— -1 on failure
— 0 in the child process
— the child’s PID in the parent process

execve () replaces a process with another program

— pathname — path of the program to load
— argv — array of strings, arguments to process

— envp — same as argv but for environment

Modern OS’s are smart and won’t let you make infinite forks.

Process Management

Linux Process Management

Can read process by doing /proc/<PID>/states/ grep state

— R — running and runnable
— S — interruptible sleep

— D — uninterruptible sleep
— T — stopped

— 7 — zombie

The kernel allows us to explicitly stop processes but we must restart them
After the kernel initializes, it creates a single process
— Looks for program in /sbin/init

init is responsible for executing every other process, it must always be active, else kernel thinks you’re
shutting down

Using htop helps us keep track of existing processes

Kernels will eventually recycle PIDs of finished processes

Maintaining the Parent-Child Relationship

OS sets exit status to a process that’s finished executing
Minimum acknowledgment the parent has to do is read the child’s exit status
Two possible situations:
— Child exits first (zombie process)
— Parent exits first (orphan process)
wait (status) — where to store wait status of the process

— -1 on failure
— 0 for non-blocking calls w/ no child change

— PID of child process with a change

OS can only remove the zombie’s entry after wait () retrieves its PID

Zombie Processes

Process has been terminated but hasn’t been acknowledged
Process may have an error where it never reads the child’s exit status
OS can interrupt the parent process to acknowledge the child
This is a suggestion, and the parent is free to ignore it
— Basic form of IPC, called a signal
The OS has to keep a zombie process until it’s been acknowledged

If the parent process ignores it, the zombie has to wait to be reparented

Orphan Processes Need a New Parent

6

Child processes still need a process to acknowledge its exit
OS re-parents the child to init — init now responsible for acknowledging the child

init accepts all orphans, dead or alive

Basic IPC

IPC is transferring bytes between two of more systems
Reading/writing is a form of IPC
read just reads data from a file descriptor
No EOF character, just returns 0 bytes read
— Kernel returns 0 on a closed file descriptor
We need to check for errors

write similarly returns the number of bytes written, but we can’t always assume success

Standard File Descriptors
e We could close fd 0 (standard input) and open a file instead
e Signals are a form of IPC that interrupts
e Kernel sends a number to your program indicating the type of signal

— Kernel’s handlers either ignore the signal or terminate

— If the default handler occurs, the exit code will be 128 + the signal number

e Ctrl+C sends SIGINT — signal interrupt from keyboard

Setting Own Signal Handlers

e Declare a function w/ no return and 1 int argument

e Some common interrupts on Linux:

2: SIGINT (keyboard)

— 9: SIGKILL (terminate)
— 11: SIGSERV (seg fault)
— 15: SIGTERM (terminate)

e Processes can be interrupted at any point of execution, and resumes once the signal handler returns —
example of concurrency

kill PID sends SIGTERM signal but won’t terminate if the process is in uninterruptible sleep

kill -9 PID will kill the process no matter what

Non-Blocking Calls
e A non-blocking call returns immediately so we can check if something happens
e To turn wait into a non-blocking call, we can use the flag WNOHANG in options

e To react to changes in a non-blocking call we can either use polling or an interrupt

7 Process Practice

e Uniprogramming is for old-batch OSs
e Uniprogramming is when only one process is running at a time — no parallelism and no concurrency

e Multiprocessing — parallel or concurrent both possible, we want parallel AND concurrent

Scheduler Decides When to Switch
e To create a process, the OS has to at least load it into memory
e While maintaining, the scheduler decides when it’s running

e First we focus on mechanics of switching processes

Core Scheduling Loop

1. Pause currently running process
2. Save its state so you can restore later
3. Get next process to run from scheduler

4. Load next process’ state

e Cooperative multitasking is when the process uses a syscall to tell the OS to pause it

e True multitasking is when the OS retains control and pauses processes

Context Switching

e Name for switching processes
e We have to save all register values using the same CPU the process is already using
e Hardware support for saving state, but we may not want to save everything

e Context switching is pure overhead, we want to minimize

A New API
e int pipe(int pipefd[2]);

— Returns 0 on success and -1 on failure (sets errno)
— Forms a one-way communication channel using two file descriptors

— pipefd[0] is read and pipefd[1] is the write end

e Kernel-managed buffer, any data written to one is read on the other end

8 Subprocesses

We Want to Send/Receive Data From a Process

1. Create a new process that launches command line argument
2. Send string "Testing\n" to that process

3. Receive any data it writes to that process

A More Convenient API — execlp

e Doesn’t return on success, -1 on failure
e Will let you skip string arrays

o It will also search for executables using the PATH environment variable

Final APIs — dup and dup2
e Returns a new file descriptor on success, -1 on failure and sets errno

e Copies file descriptor so both refer to the same thing

9 Basic Scheduling

Preemptible and Non-Preemptible Resources
e Preemptible resources can be taken away and used for something else e.g. a CPU
e The resource is then shared through scheduling
e A non-preemptible resource can’t be taken away w/o acknowledgment e.g. disk space
e The resource is instead shared through allocations and deallocations

— Parallel and distributed systems may allow you to allocate a CPU

Dispatchers and Schedulers Work Together
e A dispatchers is a low-level mechanism responsible for context switching

e A scheduler is a high-level policy responsible for deciding which processes to run

Scheduler Runs Whenever a Process Changes State
e For non-preemptible resources — process runs until completion, once started
e Scheduler only makes decision once the process is terminated

e Preemptive allows the OS to run scheduler at will

Important Metrics
e Minimize waiting time and response time
e Maximize CPU utilization
e Maximize throughput

e Fairness

First-Come First-Serve — FCFS
e Most basic form of scheduling
e First process that arrives gets access to CPU

e Processes stored in a FIFO queue

Shortest Job First — SJF
e Always schedule job w/ shortest burst time first
e Still assuming no preemption
e But it is not practical

— Likely optimal at minimizing average wait time
— Don’t know burst time of each process

— Long jobs may be starve (or never execute)

Shortest Remaining Time First — SRTF

e Assume that minium waiting time is 1 unit, optimize average waiting time

Round-Robin — RR
e Haven’t discussed fairness so far — trade-offs
e OS divides execution into time slices (or quotas)

e Maintain a FIFO queue of processes similar to FCFS

Pre-empt is still running at end of the quantum and re-add to queue

RR performance depends on quantum length and job length

— RR has low response times and good interactivity
— Fair allocation of CPU and low average waiting time
— Performance depends on quantum length

x Too high — becomes FCFS
* Too low — too many context switches (high overhead)

e RR has poor average waiting time when jobs have similar lengths

Scheduling Trade-Offs
e FCFS — most basic scheduling algorithm

e SJF — tweak to reduce waiting time
e SRTF — uses SJF but with preemption

e RR — optimizes fairness and response time

10 Advanced Scheduling

Adding Priorities
e We may favour some processes over others

e Run high priority processes first, round-robin processes of equal priority

On Linux, -20 is the highest priority and 19 is the lowest

We may lead processes to starvation is there’s lots of high-priority loads

One solution is to have the OS dynamically change the priority

Priority Inversion

e We can accidentally change priority of low to high, would depend on if a high-priority process depended
on a low-priority process

e Solution is to have priority inheritance — inherit priority of the waiting process
e Idea is to separate processes that users interact with

— Foreground processes are interactable and need good response time

— Background processes may just need good throughput

Using Multiple Queues

e Create different processes for foreground and background processes

— Foreground — RR
— Background — FCFS

Now we have to schedule b/w queues

— RR the queues or use a priority system

We’ll assume symmetric multiprocessing (SMP)

— All CPUs connected to same physical memory

— CPUs all have their own (lowest-level) caches
e One approach is to use same scheduling for all CPUs

— Only one scheduler — adds processes while CPU available
— Pros: good CPU utilization, fair to all processes

— Cons: not scalable, poor cache locality

Another is to create per-CPU schedulers

— Assign new processes to CPUs with the lowest # of processes
— Pros: easy to implement, scalable, good cache locality

— Cons: load imbalance

We can also compromise b/w global and per-CPU

— Keep a global scheduler that can rebalance per-CPU queues

x If a CPU is idle, take a process from another CPU (work stealing)

— We may have some processes that are more sensitive to caches
— Using processor affinity

x Preference of a process to be scheduled on the same core
e Gang scheduling (co-scheduling)

— Multiple processes may need to be scheduled simultaneously
— Scheduler on each CPU cannot be completely independent

— Requires a global context-switching across all CPUs

Real-Time Scheduling

e Real-time means there are time constraints, either for a deadline or rate

e Hard and soft real-time systems

Linux FCFS and RR Scheduling

e Use a multilevel queue scheduler for processes with the same priority

— Also let the OS dynamically adjust the priority

— Soft real-time processes — always schedule for the highest priority first

— Normal processes — adjust priority based on aging

10

O(1) Scheduling Issues

e Now kernel has to detect processes which are interactive using heuristics

e Processes that sleep a lot may be more interactive

Ideal Fair Scheduling (IFS) is Fairest but Impractical
e Performs way too many context switches

e Have to constantly scan all processes at O(N)

Completely Fair Scheduler (CFS)
e For each runnable process, assign it to a virtual runtime
e At each scheduling point, increase virtual runtime by t x weight (priority)

— Virtual time monotonically increases

x Scheduler selects process based on lowest virtual runtime
x Compute dynamic runtime based on IFS

e Implemented on red-black tree, self-balancing BST

— O(log(n)) insert, delete, find operations

11 Virtual Memory

Requirements of Virtual Memory
e Multiple processes must co-exist

e Processes unaware they are sharing physical memory and cannot access each other’s data, unless
explicitly allowed

e Performance close to actual physical memory

e Limit amount of wasted memory — fragmentation

Segmentation/Segments are Coarse-Grained

e Each segment is a variable sized — dynamically allocated

Legacy technique that’s not really used anymore

Segments are large and heard to relocate, but leads to fragmentation

Each segments contains a base, limit, and permissions
e MMU checks that offset is within limit, then calculates base + offset and does permission checks

— If not, results in a seg fault

Memory Management Unit (MMU)
e Maps virtual addresses to physical addresses and does permission checks
e One technique is dividing memory into fixed size pages (4096 bytes)

e A page in virtual memory is called a page, and a page in physical memory is called a frame

11

Addressing
e Typically don’t use all 64 bits its virtual address

e CPUs may have diff levels of virtual addresses you can use
o We'll assume 39 bits virtual address space, allows for 512 GiB of memory (called Sv39)

e Implemented with page table indexed by Virtual Page Number (VPN) —looks up Physical Page Number
(PPN)

27 bits 12 bits
Virtual address ’ Unusedl Index l Offset ‘

227 entries

Page Table

44 bits 12 bits
Physical address | Unused PPN Offset

e Page Table Entry (PTE) also stores flags in lower bits

Each Process Gets Its Own Page Table
e When you call fork() on a process, it will copy the page table from the product

e Turn off the write permissions so that the kernel can implement copy-on-write
e We don’t need to copy the full page table — syscall vfork()

— Shares all memory with the product

— Only used in very performance sensitive programs

12 Page Tables

e Most programs don’t use all virtual memory space, so how do we take advantage?

9 bits 12 bits
Virtual address Unused| L0 |0ffset

29 entries

satp——

Root Page Table
(Starting physical address)

Page Table

44 bits 12 bits
Physical address = Unused PPN Offset

12

9 bits 9 bits 9 bits 12 bits
Virtual address|Unused | 12 | 11 | Lo | offset

N Ry

next

page
&\ \
satp—

L2 Page Table L1Page Table LO Page Table

44 bits 12 bits
Physical address = Unused PPN Offset

Multi-level page tables save space for sparse allocations

Given physical pages, the OS uses a free (linked) list

Unused pages contain the next pointer in the free list

— Physical memory gets initialized at boot, remember

13 Page Table Implementation

Alignment: Memory Eventually Lines Up With Byte 0

To allocate, remove from the free list, and to deallocate, add back to the free list

e If pages are 4096 bytes, then pages always start when all offset bytes (12) are 0

e How many levels do I need?

— We want each page table to fit into a single page
— Find number of PTEs we could have in a single page 2'°

Virtual bits — Offset bits

Numb f levels =
tber of Jevels Index bits

Page Table for Every Memory Access is Slow

e Need to follow pointers across multiple levels of page tables
o We'll likely access the same page multiple times temporally close to the first

— Process may only need a few VPN-PPN at a time

— Use a computer science class — Caching!

27 bits 12 bits
‘Unused[VPN [Offset

VPN | PTE

44 bits 12 bits
Unused PPN Offset
4

TLB Hit

TLB

Iadd entry to TLB

TLB — Translation Look-aside Buffer

13

Context Switching Requires Handling the TLB
e Can flush the cache or attach a PID to the TLB

e RISC-V & most implementations just flush the cache

e sbrk call grows or shrinks your heap, but recall, the stack has a set limit

To grow, will grab pages from the free lists to fulfill the request
— Kernel sets PTE_V (a valid bit) and other permissions

Difficult to use in memory allocations, rarely shrinks the heap — will stay claimed as the kernel can’t
free pages

Memory allocations use mmap to bring in large blocks of virtual memory

Interrupt handler

Trampoline (kernel executes)

Trap Frame

H .
eap Contains the PCB

(kernel saves
registers here)

_ <——Known invalid page

(kernel can detect
stack overflow)

~

Stack

Data

Instructions

A A

Invalid

e The kernel can allow for processes to ccess fixed virtual memory/data without using a system call

Page Faults

e Type of exception for virtual memory accesses

— Generated if it cannot find a translation or the permission check fails
e Allows the OS to handle it
e MMU is the hardware that uses page tables:

— May be a single page table (wasteful)

Use kernel-allocated pages from a free list

Be multi-level to save pages for sparse allocations

Use a TLB to speed up memory accesses

14 Virtal Memory Lab Primer

Not covered in these notes.

14

15 Priority Scheduling and Memory Mapping
Dynamic Priority Scheduling
e May also be called feedback scheduling
e We let the algorithm manage priorities — we set time slices and measure CPU usage

e Increase the priority of processes that don’t use their full time slices, and decrease priority of those
that do

e Each process gets assigned a priority when started, P,
e Pick the lowest number to schedule, if it yields, then pick the next lowest

— Break ties with arrival order

— If a lower number becomes ready, switch to it
e Record how much time each process executes for in this priority interval, Cp,
e At the end of the priority interval, update each process

P,
Pnzi n
5 +C

e Reset (), back to 0 at the end of the priority interval

15

	Introduction
	The Kernel
	Libraries
	Process Creation
	Process Management
	Basic IPC
	Process Practice
	Subprocesses
	Basic Scheduling
	Advanced Scheduling
	Virtual Memory
	Page Tables
	Page Table Implementation
	Virtal Memory Lab Primer
	Priority Scheduling and Memory Mapping

