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Vector Analysis

3.2 Orthogonal Coordinate Systems

Cartesian Coordinates

Cylindrical Coordinates

Measured in  . 

  is the azimuth angle measured counterclockwise from the positive x axis 

in the x-y plane

Differential volume element is given in:

Cylindrical Coordinates

Measured in  

The zenith angle   is measured from positive z-axis downwards

Differential volume element is given by:

dl =  dx +x̂   dy +ŷ  dzẑ

r, Φ, z

Φ

dV = r dr dΦ dz

R, θ, Φ

θ

dV = R   sin θ dR dθ dΦ2
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3.4 Gradient of a Scalar Field

Gradient

In Cartesian coordinates

In cylindrical coordinates

In spherical coordinates

Properties of the Gradient Operator
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3.7 The Laplacian Operator
For a vector   specified in Cartesian coordinates, the Laplacian of   is 

given by:

Through direct substitution, it can also be shown that (relevance unknown)

E E
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Electrostatics

4.1 Maxwell’s Equations
Modern electromagnetic theory is based on four fundamental relations known as 

Maxwell’s equations

  and   are the electric field intensity and flux density

Correlated by   where   is the electrical permittivity

  and   are the magnetic field intensity and flux density

Correlated by   where   is the magnetic permeability

James Clerk Maxwell published these equations in 1873 and established the 

first unified theory of electricity and magnetism

💡 Under static conditions, all functions of time go to zero

Electrostatics

Magnetostatics

We can study electricity and magnetism as separate phenomena so long as 

distributions of charge and current flow stay constant
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4.2 Charge and Current Distributions

Charge Densities

Volume charge density  

The total charge contained in a volume   is

The surface charge density   is given by:

Line charge density   is given by:

Current Density

Let   be the velocity at which charges move in a tube. Then, the current 

density is given by:

Then, the total current flowing through a surface is

💡 When a current is generated by actual movement of charged matter, it is 

called convection current, and   is called a convectional current 

density.

Otherwise, if the current is generated by movement of charged particles 

relative to the host material, we call it conduction current.

4.3 Coulomb’s Law
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Coulomb’s Law was first introduced for electrical charges in air, and was 

later generalized to other media

Coulomb’s Law implies that:

An isolated charge   induces an electric field   at every point in space, 

where   is given by

In the presence of an electric field   at any given point in space, the 

force acting on a small, positive test charge is

Electric Field Due to Multiple Point Charges

The electric field at any given point is the vector sum of the field caused by 

all point charges

Electric Field Due to Charge Distribution

Volume distrubtion

Surface distribution

Line distribution

For an infinite sheet of charge we have

4.4 Gauss’ Law
We begin by restating the differential form of Gauss’ Law:  

q E
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Maxwell’s equations incorporate Gauss’ law in themselves

For a simple case such as an isolated point charge, we can use Coulomb’s 

law

For more complex systems, we can still use Coulomb’s law, but Gauss’ law is 

much easier to apply

A shortcoming is that it can only be applied to symmetrical charge 

distributions

4.5 Electric Scalar Potential
Operation of an electric circuit usually described in terms of currents 

flowing through branches and voltage at nodes. 

Voltage difference   b/w two nodes represents the amount of work or potential 

energy required to move a unit charge from one terminal to the other.

Subject of this section is relationship between   and  .

Electric Potential as a Function of Electric Field

When a charged particle is in an electric field there is

Work done in moving any object a vector differential distance   while 

exerting a force   is:

Differential electric potential energy   per unit charge is called the 

differential electric potential  . That is,

Units are (J/C) or (V)

The voltage difference between two nodes in an electric circuit has the same 

value regardless of which path in the circuit we follow in between the nodes. 

Moreover, Kirchoff’s voltage law states the net voltage drop around a closed loop 

is zero. 

V

E V
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💡 The line integral of the electrostatic field   around any closed contour 

  is  .

Conservative property of the electrostatic field can be deduced from Maxwell’s 

second equation. If  , then

If we integrate this over an open surface   and apply Stokes’ Theorem to 

convert the surface integral into a line integral, we obtain

Electric Potential Due to Point Charges
Electric field due to a point charge   is given by:

Electric Potential Due to Continuous Distributions
Volume distribution

Charge distribution

Line distribution

Electric Field as a Function of Electric Potential
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💡 This differential relationship between   and   allows us to determine   

for any charge distribution by first calculating   and then taking the 

negative gradient of  .

An electric dipole consists of two point charges, equal magnitude but opposite 

polarity separated by a distance  .

The dipole moment is given by  . Then, we have:

Poisson’s Equation

4.6 Conductors
A material medium has electromagnetic constitutive parameters:

Electrical permittivity 

Magnetic permeability  

Conductivity  

Homogeneous means the constitutive parameters do not vary by position

Isotropic means the constitutive parameters do not vary from point to point

Conduction current density is given by:

A perfect dielectric has   and a perfect conductor has  

Drift Velocity

  is a property called the electron mobility. Similarly, we have hole drift 

velocity and hole mobility

The total conduction current density is given by:
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For a perfect dielectric we would have   and  

Resistance

Reciprocal of   is called   which is conductance, with a unit of  . For a 

linear resistor:

If   is in the   direction, the inner conductor must be at a higher potential 

than the outer conductor. The voltage difference is given by:

Joule’s Law

The work expended by the electric field in moving   a differential distance 

  and moving a   a distance   is:

Power   is measured in units of watts (  ) and is defined as the time rate of 

change in energy. For a volume  , the total dissipated power is:
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4.7 Dielectrics
In a conductor electrons are loosely bound to their atom, whereas in 

dielectrics the atoms are tightly bound

Polarization Field

In a free space with  , the presence of microscopic dipoles in a 

dielectric material alters that relationship to:

where   is the electric polarization field.   is directly proportional to   and 

is expressed as

where   is the electric susceptibility of the material.

Permittivity of a material   is given by:

Dielectric Breakdown

The preceding model assumes that the magnitude   will not exceed a certain 

critical value, the dielectric strength  . Beyond this, electrons will detach 

and accelerate though the material as a conduction current. This is known as 

dielectric behaviour. 

4.8 Electric Boundary Conditions

💡 A vector field is spatially continuous if it does not exhibit abrupt 

changes in either magnitude of direction when expressed as a function of 

position. 

At the boundary of two distinct media, one notices that:

P =  ⋅∫
v

E  dV  (Joule’s Law)J

=D ε  0E

=D ε  +0E P

P P E

=P ε  χ  0 eE
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ε

ε = ε  (1 +e χ  )e

E

 Eds

V  =br E  dds



Electrostatics 9

I other words, the tangential component of the electric field is continuous 

across the boundary between any two media.

Dielectric-Conductor Boundary
If medium 1 is a dielectric and medium 2 is a perfect conductor, then because the 

electric fields and fluxes vanish in a conductor, it follows that  . 

This implies that the tangential and normal components to the interface are both 

zero. 

Conductor-Conductor Boundary
If medium 1 has permittivity   and conductivity  , and medium 2 has 

permittivity   and conductovity  , then the interface between them holds a 

surface charge density  .

The normal component of   has to be continuous across the boundary between two 

different media under electrostatic conditions.

4.9 Capacitance
When separated by a dielectric, any two conducting bodies form a capacitor. 

If a DC voltage is connected across the surfaces, the positive and negative 

source terminals accumulate charges of   and   respectively.

💡 When a conductor has excess charge, it distributes the charge on its 

surface to maintain a zero electric field everywhere within the 

conductor. 

The tangential component of   always vanishes at a conductor’s surface, so   

is always perpendicular. The normal component is then given by:
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The charge   is equal to the integral of   over the surface  .

The value of   obtained for any specific capacitor configuration is always 

independent of the magnitude of  .

If the material between the conductors is not a perfect dielectric but has a 

small conductivity  , then the general expression for the   resistance is:

For a uniform conductivity and permittivity, we then obtain

The voltage difference between the plates is:

And the capacitance would then be:

4.10 Electrostatic Potential Energy
The energy spent in charging a capacitor using a power supply us stored in the 

dielectric medium in the form of electrostatic potential energy.

The volage   across a capacitor is related to the charge stored   by

The amount of work   required to charge the capacitor can be given by 
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where   is the final voltage.

The electrostatic energy density   is defined as the electrostatic potential 

energy   per unit volume:

The opposing charged plates are also attracted to each other by an electrical 

force 

where   is given by:

We generalize this result for any   along any direction as:
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Magnetostatics

5.1 Magnetic Forces and Torques
We defined electric field   at point in space as an electric force per unit 

charge acting on a test charge

Now, we define the magnetic flux density   at a point in space in terms of 

magnetic force that acts on a moving test charge

The strength of   is measured in teslas. For a positively charged test 

particle, the direction of   is that of the cross product containing   and   

governed by the right hand rule.

The strength of   is given by

5.1.1 Magnetic Force on a Current-Carrying Conductor

For a closed circuit of contour   carrying a current  , the magnetic force is

5.2 The Biot-Savart Law
Magnetic flux and magnetic field are related by:

The Biot-Savart law states that the differential magnetic field   generated 

by a steady current   flowing through a differential length   is:

The magnetic field is orthogonal to the plane containing the direction of the 

current element and the distance vector

E

B

 =Fm q ×u B

B

F u B

 Fm

F  =m quB sin θ

C I

 =Fm I  
d ×∮

C

l B

=B μH

dH

I dl

d =H   

4π

I

R2

dl × R̂
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5.2. Magnetic Field Due to Surface and Volume Current 
Distributions

For an infinitely long wire:

5.3 Maxwell’s Magnetostatic Equations

5.3.1 Gauss’ Law for Magnetism

Just as we had Gauss’ Law for Electricity, we can find a magnetic counterpart, 

the Gauss’ Law for Magnetism

Magnetic field lines, in contrast to electric field lines, always form 

continuous closed loops from North to South

Gauss’ Law is constrained to a choice of a Gaussian surface enclosing the 

charges, similarly, Ampere’s Law is constrained to a choice of an Amperian 

loop encircling the current

5.4 Vector Magnetic Potential
We introduce a quantity called the vector magnetic potential  :

5.4.1 Vector Poisson’s Equation
Given the equations:

and

gives us the vector Poisson’s equation:

I  d =l   ds =JS  dVJ

=B   

2πr

μ  I0
ϕ̂

∇ ⋅ =B 0⟺  ⋅∮
S

B d =s 0

A

=B ∇ × A

∇(∇ ⋅ A) − ∇ A =2 μJ

∇ ⋅ A = 0

∇ A =2 −μJ
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Since we can express this equation for each of the coordinate components of A and 

J, we can write the vector equation:

5.4.2 Magnetic Flux

The magnetic flux   linking a surface   is defined as the total magnetic flux 

density passing through it:

In free space, we modify   to:

5.5 Magnetic Properties of Materials
we can classify materials as diamagnetic, paramagnetic, or ferromagnetic

5.5.2 Magnetic Permeability

In free space,   is modified to:

where the magnetization vector   is defined as the vector sum of the magnetic 

dipole moments of toms contained in a unit volume of the material

In mose magnetic materials, we have   where   is the magnetic 

susceptibility of the material

5.5.3 Magnetic Hysteresis of Ferromagnetic Materials

Discusses magnetic domain theory

Hysteresis means to “lab behind” 

the existence of a hysteresis loop implies that the magnetization process 

depends not only on the magnetic field   but also on the magnetic history 

of the material

5.6 Magnetic Boundary Conditions
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4π

μ
∫
V R

J

Φ S

Φ =  ⋅∫
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M

=M χ  mH χ

μ = μ  (1 +0 χ  )m
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By analogy of Gauss’ Law, we find that

we can further represent that as

surface currents can exist only on the surfaces of perfect conductors and 

superconductors. hence, at the interface between media with finite 

conductivities, we have   and 

To summarize, we may say that boundary conditions require:

5.7 Inductance
a typical inductor consists of multiple turns of wire helically coiled around 

a cylindrical core, such a structure is called a solenoid

5.7.1 Magnetic Field in a Solenoid

 ⋅∮
S
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μ  2
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Ia2
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self-inductance is the magnetic flux linkage of a coil or circuit with itself

mutual inductance involves the magnetic flux linkage in a circuit due to the 

magnetic field generated by a current in another one

5.7.2 Self-Inductance of a Solenoid

Magnetic flux linkage   is defined as the total magnetic flux linking a given 

circuit or conducting structure

The self-inductance of any conducting structure is defined as the ratio of the 

magnetic flux linkage   to the current   flowing through the structure

5.7.3 Self-Inductance of Other Conductors

for a two-conductor configuration for either two parallel wires or a coaxial 

wire, the inductance is given by:

=B  

l

μNI
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∫
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5.7.4 Mutual Inductance

5.8 Magnetic Energy

this is the magnetic energy stored in the inductor

we can also define the magnetic energy density

for any volume   containing a material with permeability   the total magnetic 

energy stored in a magnetic field is 

L  =12  =
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Λ  12
   ⋅
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N  12 ∫
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B1 ds
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2

1 2
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2

1 2
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2

1
∫
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Maxwell’s Equations for Time-
Varying Fields

6.1 Faraday’s Law
Faraday hypothesized that if a current produces a magnetic field, then the 

converse should also be true: 

A magnetic field should produce a current in a wire

current is only induced when the magnetic flux changes, and the direction of 

the current is dependent on whether the flux is increasing or decreasing

when a galvanometer detects the flow of current through the coil, it means 

that a voltage has been induced across the galvanometer terminals

called the electromotive force   (it’s a voltage not a force)

an emf can be generated in a closed conducting loop under any of the following 

three conditions:

a time-varying magnetic field linking a stationary loop, called a 

transformer emf

a moving loop with a time-varying area in a static field, called the 

motional emf

a moving loop in a time-varying field

total emf is given by:

6.2 Stationary Loop in a Time-Varying 
Magnetic Field

Φ =  ⋅∫
S

B ds

V  emf

V  =emf −N  =
dt

dΦ
−N  ⋅

dt

d
∫
S

B ds

V  =emf V  +emf
tr V  emf

m
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the transformer emf is the voltage difference that would appear across the 

small opening in terminals

6.3 The Ideal Transformer

6.4 Moving Conductor in a Static Magnetic 
Field

the field generated by the motion of the charged particle is called a motional 

electric field

in general, if any segment of a closed circuit with contour   moves with a 

velocity   across a static magnetic field   then the induced motional emf is 

given by:

6.5 The Electromagnetic Generator
the magnetic field is 

as the loop rotates with an angular velocity   about its own axis, the 

segments move with:

we then obtain the result
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the angle   is realted to   by

6.6 Moving Conductor in a Time-Varying 
Magnetic Field

6.7 Displacement Current
Ampere’s Law in differential form is given by

we integrate both sides over an arbitrary open surface   and contour  . 

the surface integral of   is the conduction current   flowing through  , 

and

the surface integral of   becomes a line interal of   over  

the second term on the right has units of amperes obviously, and is 

proportional to the time derivative of the electric flux density  

this is called the displacement current  

from the above two equations, we can say that

6.9 Charge-Current Continuity Relation
we define   as the net current flowing across   out of  

thus,   is the negative rate of change of  
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the current   is also defined as the outward flux of the current density   

through the surface  

apply the divergence theorem and convert the surface integral of   into a 

volume integral of its divergence

we can move the time derivative inside the integral and express as a partial 

derivative of  , then drop both volume integrals

this is known as the charge-current continuity relation, or the charge 

continuity equation.

another expression for Kirchhoff’s current law:
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