

Introduction

1 Signals and Systems

1.0 Introduction
Begin our development of analysis for signals and systems

Introducing mathematical descriptions and representations

2 Linear Time-Invariant Systems

2.0 Introduction
Two properties: linearity and time-invariance

Many physical processes posses these properties and can be modelled as linear time-invariant (LTI) systems 

LTI systems also posses the property of superposition

We can characterize any LTI system’s response to a unit impulse

Convolution sum for discrete-time signals and convolution integral for continuous-time signals

We then consider class of continuous- and discrete-time signals described by linear constant-coefficient DEs

Lastly we will examine the continuous-time unit impulse function and other functions
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Fundamentals of Continuous- and Discrete-
Time Signals

1 Signals and Systems

1.1 Continuous-Time and Discrete-Time Signals

1.1.1 Examples and Mathematical Representation
Signals can be represented in many ways, but the information in a signal is contained as a pattern of variations. 

Signals are represented mathematically as equations in one or more variables

We will consider two basic types of signals

One where the independent variable is continuous — continuous-time signals, and

One where the independent variable is discrete — discrete-time signals

Conventionally, we use the variable   to represent continuous independent variables, and   to represent discrete 
variables

 

 

To emphasize the fact that discrete-time signals are only defined for integer values, we sometimes call them discrete-
time sequences

t n

x(t)

x[n]
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One can derive a discrete-time signal by sampling a continuous-time signal at regular intervals

1.1.2 Signal Energy and Power
If   and   are the voltage and current across a resistor, then the instantaneous power is given by:

The total energy dissipated by over the interval   is

and the average power over this interval is 

We can define the time-averaged power over an infinite interval as 

1.2 Transformations of the Independent Variable

1.2.1 Examples of Transformations of the Independent Variable
In this section we will focus on a number of elementary signal transformations that modify the independent variable 
(time axis)

This will allow us to discuss important basic properties of signals and systems

The simplest transformation is the time shift, represented mathematically as   or  . It represents 
a translation along the independent axis

Another transformation is time reversal, which is represented by   or   and can be obtained by 
reflecting the signal along the dependent axis

Then there is time scaling, which is represented by   or  .

1.2.2 Periodic Signals
A signal is periodic if there is a positive value   such that   for all  . 

We call   periodic with period  

The smallest   for which the above identity holds is called the fundamental period  . 

1.2.3 Even and Odd Signals
A signal is called odd if 

v(t) i(t)

p(t) = v(t)i(t) =  v (t)
R

1 2

t  <1 t < t  2

  v (t) dt
R

1
∫

t  1

t  2
2

   v (t) dt
t  − t  2 1

1

R

1
∫

t  1

t  2
2

P  =∞    ∣x(t)∣  dt =
T →∞
lim

2T

1
∫

−T

T
2

   ∣x[n]∣
T →∞
lim

2N + 1

1

n=−N

∑
+N

2

x(t − t  )0 x[n − n  ]0

x(−t) x[−n]

x[αn] x(αt)

T x(t) = x(t + T ) t

x T

T  0 T  0
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and even if

Every signal can be decomposed into even and odd component signals

1.3 Exponential and Sinusoidal Signals

1.3.1 Continuous-Time Complex Exponential and Sinusoidal Signals
The continuous-time complex exponential signal is of the form

If   and   are real, then the signal is a real exponential. If   is purely imaginary, then consider

For   to be periodic, we must have a period   such that

where  . Then, the smallest possible value for which   is still periodic is

Furthermore, by using Euler’s formula, we can write

The inverse of the fundamental period   is called the fundamental frequency  .

1.3.3 Periodicity Properties of Discrete-Time Complex Exponentials

  

Distinct signals for distinct values of  Identical signals for values of   separated by multiples of  

Periodic for any choice of  
Periodic only if   for some integers   and

 

Fundamental frequency  Fundamental frequency  

Fundamental period Fundamental period

 

x(−t) = x(t)

x[−n] = x[n]

 

x(−t) = −x(t)

x[−n] = −x[n]

x(t) = Ceat

C a a

x(t) = ejω  t0

x(t) T

e =jω  (t+T )0 e ejω  t0 jω  T0

e =jω  T0 1 x(t)

T  =0  

∣ω  ∣0

2π

e =jω  t0 cos(ω  t) +0 j sin(ω  t)0

T  0 ω  0

ejω  t0 ejω  n0

ω  0 ω  0 2π

ω  0
ω  =0 2πm/N N > 0

m

ω  0 ω  /m0

ω  =0 0 :  undefined  ω  =0 0 :  undefined 
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1.4 The Unit Impulse and Unit Step Functions

1.4.1 The Discrete-Time Unit Impulse and Unit Step Functions
The unit impulse or unit sample is defined as

The unit step function, another basic discrete-time signal, is defined as

We can see that the discrete-time unit impulse is the first difference of the discrete-time unit step functions

Conversely, the discrete-time unit step is the running sum of the unit sample

1.4.2 The Continuous-Time Unit Step and Unit Impulse Functions
The unit step in continuous-time is defined similarly to its discrete-time counterpart. One difference is that the unit step 
function in continuous-time is undefined at  

The unit step is the running integral of the unit impulse

Conversely, the unit impulse function is considered the first derivative of the unit step

ejω  t0 ejω  n0

ω  =0  0 :  

ω  0

2π ω  =0  0 :  

ω  0

2πm

δ[m] =  {
0, n = 0

1, n = 0

u[n] = {
0, n < 0

1, n ≥ 0

δ[n] = u[n] − u[n − 1]

u[n] =  δ[m]
m=−∞

∑
n

0

u(t) =  {
0, t < 0

1, t > 0

u(t) =  δ(τ) dτ∫
−∞

t

δ(t) =  

dt

du(t)
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2 Linear Time-Invariant Systems

2.5 Singularity Functions
We introduce a set of related signals called the singularity functions to learn more about the idealized unit impulse 
function in continuous-time

These signals are defined in terms of how they behave under convolution with other signals

2.5.1 The Unit Impulse as an Idealized Short Impulse
By the sifting property, the unit impulse can be seen as the impulse response of the identity system. We have for any 

 , 

2.5.2 Defining the Unit Impulse Through Convolution
All properties of the unit impulse can be obtained through the operational definition given above. If we let   for 
all , then

With some more manipulation, we can see that

2.5.3 Unit Doublets and Other Singularity Functions
Consider the LTI system for which the output is the derivative of the input  

The unit impulse response of this system is the derivative of the unit impulse, called the unit doublet  

Taking the derivative again,

x(t)

x(t) = x(t) ∗ δ(t)

x(t) = 1
t

1 = x(t) = δ(t) ∗ x(t) =  δ(τ)x(t −∫
−∞

+∞

τ) dτ =  δ(τ) dτ∫
−∞

+∞

f(t)δ(t) = f(0)δ(t)

y(t) =  

dt

dx(t)

u  (t)1

 =
dt

dx(t)
x(t) ∗ u  (t)1

2
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We see that in general, we have

Sometimes we use alternative notations for   and  

  

 

dt2

d x(t)2

=   

dt

d

dt

dx(t)

= x(t) ∗ u  (t) ∗ u  (t)1 1

= x(t) ∗ u  (t)2

u  (t) =k u  (t) ∗1 ⋯ ∗ u  (t) (k times)1

δ(t) u(t)

  

δ(t)

u(t)

= u  (t)0

= u  (t)−1
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The Fourier Series

3 Fourier Series Representation of Periodic Signals

3.3 Fourier Series Representation of Continuous-Time Periodic Signals

3.3.1 Linear Combinations of Harmonically Related Complex Exponentials
For a signal   with a fundamental frequency  , there is a set of harmonically related complex 
exponentials   for all integers  

The terms for   and   are called the fundamental components or first harmonic components

Components after   are known as the  th components

3.3.2 Determination of the Fourier Series Representation of a Continuous-Time Periodic 
Signal
Given

if we multiply both sides by   then integrate from   to  

From MAT290 we can recall how to evaluate the integral in the brackets. Rewriting using Euler’s formula:

Thus,

and

ϕ  (t) =k ejω  t0 ω  0

ϕ  (t) =k ejkω  t0 k

k = 1 k = −1

k = ∣1∣ N

x(t) = a  e

k=−∞

∑
∞

k
jkω  t0

e−jnω  t0 0 T

x(t)e =−jnω  t0 a  e e

k=−∞

∑
∞

k
jkω  t0 −jnω  t0

 x(t)e  dt =∫
0

T
−jnω  t0

 a  [  e e  dt]
k=−∞

∑
∞

k ∫
0

T
jkω  t0 −jnω  t0

 e  dt =∫
0

T
j(k−n)ω  t0

 cos(k −∫
0

T

n)ω  t dt +0 j  sin(k −∫
0

T

n)ω  t dt0

 e  dt =∫
0

T
j(k−n)ω  t0

 {
T , k = n

0, k = n

∫
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To summarize, if   can be expressed as a linear combination of harmonically related complex exponentials (or, if it 
has a Fourier series representation), then the coefficients are given by the equation above. This pair of equations defines 
the Fourier series of a periodic continuous-time signal.

3.4 Convergence of the Fourier Series
While Fourier maintained that any periodic signal can be represented by a Fourier series, this is not actually true. 
However, a Fourier series exists for all functions that we are concerned with in this course.

Let   be a finite series of the form

Let   denote the approximation error, represented by

We need to specify a quantitative measure of how good any particular approximation is. We can use the criterion of the 
energy in the error over one period

A set of conditions known as the Dirichlet conditions guarantees that   equals its Fourier series representation, 
except where   is discontinuous. These conditions will apply to all of the functions studied in this course.

1. Over any period,   must be absolutely integrable, that is

2. In any finite interval of time,   is of bounded variation. There are no more than a finite number of maxima and 
minima during any single period of the signal.

3. In any finite interval of time, there are only a finite number of discontinuities. Furthermore, each of these 
discontinuities is finite.

3.5 Properties of the Continuous-Time Fourier Series

a  =n   x(t)e  dt
T

1
∫

T

−jnω  t0

x(t)

 

x(t) =  a  e

k=−∞

∑
∞

k
jk(2π/T )t

a  =   x(t)e  dtk
T

1
∫

T

−jk(2π/T )t

(1)

(2)

x  (t)N

x  (t) =N  a  e

k=−N

∑
N

k
jkω  t0

e  (t)N

e  (t) =N x(t) − x  (t)N

E  =N  ∣e  (t)∣  dt∫
T

N
2

x(t)
x(t)

x(t)

 ∣x(t)∣ dt <∫
T

∞

x(t)
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Suppose that the function   is a periodic signal with period   and fundamental frequency   and the Fourier series 
coefficients of   are denoted by  .

3.5.1 Linearity

3.5.2 Time Shifting
The Fourier series coefficients   of the resulting signal   may be expressed as

If we say that

then we have

The implication of this property is that when a periodic signal is shifted in time, the magnitude of its Fourier series 
coefficients does not change. 

3.5.3 Time Reversal
If we say that

then we have

3.5.4 Time Scaling

3.5.5 Multiplication

3.5.6 Conjugation and Conjugate Symmetry

x(t) T ω  0

x(t) a  k

z(t) = Ax(t) + By(t) becomes c  =k Aa  +k Bb  k

b  k y(t) = x(t − t  )0

b  =k   x(t −
T

1
∫

T

t  )e  dt0
−jkω  t0

x(t)  

FS
a  k

x(t − t  
)

 0
FS

e  a  

−jkω  t0
k

x(t)  

FS
a  k

x(−t)
 

FS
a  −k

x(αt) =  a  e

k=−∞

∑
∞

k
jk(αω  )t0

x(t)y(t)  

FS
h  =k  a  b  

l=−∞

∑
∞

l k−l

The Fourier Series 3



If we take the complex conjugate of a periodic signal  , then we apply both complex conjugation and time reversal on 
the Fourier coefficients.

3.5.7 Parseval’s Relation for Continuous-Time Periodic Signals

3.6 Fourier Series Representation of Discrete-Time Periodic Signals

3.6.1 Linear Combinations of Harmonically Related Complex Exponentials
A discrete-time signal is periodic if

The set of all discrete-time complex exponential signals periodic with   is given by

The summation as   varies of a range of successive   integers is

Determination of the Fourier Series Representation of a Periodic Signal

3.7 Properties of Discrete-Time Fourier Series

3.7.1 Multiplication

x(t)

x (t)  

∗ FS

a  −k
∗

  
∣x(t)∣  dt =

T

1
∫

T

2
 ∣a  ∣

k=−∞

∑
∞

k
2

x[n] = x[n + N ]

N

ϕ  [n] =k e =jkω  n0 e , k =jk(2π/N)n 0, ±1, ±2, …
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x[n] =  a  ϕ  [n] =
k=⟨N⟩

∑ k k  a  e

k=⟨N⟩

∑ k
jk(2π/N)n

 a  e =
n=⟨N⟩

∑ k
jk(2π/N)n

 {
N , k = 0, ±N , ±2N , …

0,  otherwise

a  =k   x[n]e
N

1

n=⟨N⟩
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FS
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x[n]y[n]  
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3.7.2 First Difference

3.7.3 Parseval’s Relation for Discrete-Time Periodic Signals

x[n] − x[n − 1]  

FS
(1 − e )a  

−jk(2π/N)
k

  ∣x[n]∣
N

1

n=⟨N⟩

∑ 2
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The Fourier Transform

4 The Continuous-Time Fourier Transform

4.1 Representation of Aperiodic Signals: The Continuous-Time Fourier 
Transform

4.1.1 Development of the Fourier Transform Representation of an Aperiodic Signal
Let’s start by revisiting the Fourier series representation for the continuous-time periodic square wave. Over one period,

and periodically repeats with period  . The Fourier series coefficients   are given by:

where  . 

We consider an aperiodic signal as the limit of a periodic signal as the period becomes large, and we examine the Fourier 
representation of that signal. For some number  ,   is  . From this aperiodic signal, we construct a 
periodic signal   for which   is one period. As we select a longer period,   becomes identical to  .

By defining the envelope   of   as

we have the coefficients  

By combining the above summation and the second formula for the coefficients, we get

x(t) =  {
1, ∣t∣ < T1

0, T  < ∣t∣ < T /21

T a  k

a  =k  

kω  T0

2 sin(kω  T  )0 1

ω  =0 2π/T

T  1 x(t) = 0 ∣t∣ > T  1

(t)x~ x(t) (t)x~ x(t)

(t) =x~  a  e

k=−∞

∑
+∞

k
jkω  t0

a  =k   x(t)e  dt
T

1
∫

−T /2

T /2
−jkω  t0

X(jω) T a  k

X(jω) =  x(t)e  dt∫
−∞

∞
−jkωt

a  k

a  =k  X(jkω  )
T

1
0
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Ultimately, we have the equations that give us the Fourier transform pair, with   referred to as the Fourier 
Transform or Fourier integral of   and   gives us the inverse Fourier transform, or synthesis equation.

For periodic signals, these complex exponentials have amplitudes   which occur at a discrete set of 
harmonically related frequencies  . 

For aperiodic signals, the complex exponentials occur at a continuum of frequencies. 

These frequencies have an ‘amplitude’ given by  

The transform   of an aperiodic signal is referred to as the spectrum

This is because the transform gives us the information we require to reconstruct the signal as a linear 
combination of sinusoidal signals at different frequencies

4.1.2 Convergence of Fourier Transforms
To derive the Fourier equations above, we assume that   is of a finite duration, however, the equations are valid 
for many infinite-duration signals too. 

Our derivation of the Fourier transform suggests we can apply the same definition and criteria for convergence. 

Just as with periodic signals, there is a set of conditions (the Dirichlet conditions) that guarantee that   is equal 
to   for any   except for at a discontinuity.

Where there is a discontinuity, the value at that   is the is average value on either side of the discontinuity.

The Dirichlet conditions require that:

1.   is absolutely integrable

2.   have a finite number of maxima and minima within any finite interval

3.   have a finite number of discontinuities within any finite interval. Each discontinuity must be finite.

4.3 Properties of the Continuous-Time Fourier Transform
Sometimes we will refer to   with the notation   and similarly   with the notation  . 
We will use this notation to refer to a Fourier transform pair:

(t) =x~   X(jkω  )e ω  

2π

1
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∑
+∞

0
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0
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x(t) x(t)
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1
∫

−∞

+∞
jwt

X(jω) =  x(t)e  dt∫
−∞

+∞
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{a  }k
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X(jω(dω/2π)
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T

1

ω=kω  0

x(t)

(t)x~

x(t) t

t

x(t)

x(t)

x(t)

X(jω) F{x(t)} x(t) F {X(jω)}−1

F
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4.3.1 Linearity

4.3.2 Time Shifting

4.3.3 Conjugation and Conjugate Symmetry

4.3.4 Differentiation and Integration

4.3.5 Time and Frequency Scaling

4.3.6 Duality

4.3.7 Parseval’s Relation

5 The Discrete-Time Fourier Transform
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F
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F
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jω

1
πX(0)δ(ω)

x(at)  

F
 X(jω/a)

∣a∣
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∫
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5.1 Representation of Aperiodic Signals: The Discrete-Time Fourier 
Transform

5.1.1 Development and the Discrete-Time Fourier Transform
We know that Fourier series coefficients for a continuous-time periodic square wave can be viewed as samples of an 
envelope function. 

As the period of the square wave increases, these samples become more finely spaced. 

Suggestion in chapter 4: represent an aperiodic signal   by constructing a periodic signal   that equals 
  over one period. 

As this period approaches infinity   was equal to   over larger and larger intervals of time. 

The discrete-time Fourier transform is given by the following equations:

We see that the discrete-time Fourier transform shares many similarities with the continuous-time case. The major 
differences between the two are the periodicity of the DT transform and the finite interval of interrogation in the 
synthesis equation. 

5.1.3 Convergence Issues Associated with the Discrete-Time Fourier Transform
Conditions on   that guarantee the convergence of this sum are direct counterparts of the convergence conditions for 
the CT Fourier transform. The first DT Fourier transform equation will converge if   is absolutely summable.

5.3 Properties of the Discrete-Time Fourier Transform
We will use the following to represent the DT Fourier transform

5.3.1 Periodicity of the DT Fourier Transform

5.3.2 Linearity of the Fourier Transform

5.3.3 Time Shifting and Frequency Shifting

x(t) (t)x~

x(t)

(t)x~ x(t)

x[n] =   X(e )e  dω
2π

1
∫

2π

jω jωn

X(e ) =jω
 x[n]e

n=−∞

∑
+∞

−jωn

x[n]
x[n]

x[n]  

F
X(e )jω

X(e ) =j(ω+2π) X(e )jω

ax [n] +1 bx  [n]  2
F

aX  (e ) +1
jω bX  (e )2

jω

x[n − n  ]  0
F

e X(e )−jωn  0 jω
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5.3.4 Conjugation and Conjugate Symmetry

5.3.5 Differencing and Accumulation

5.3.6 Time Reveral

5.3.7 Time Expansion

5.3.8 Differentiation in Frequency

x [n]  

∗ F
X (e )∗ −jω

x[n] − x[n − 1]  

F
(1 − e )X(e )−jω jω

x[−n]  

F
X(e )−jω

x  [n]  (k)
F

X(e )jkω

nx[n]  

F
j  

dω

dX(e )jω
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Sampling, Aliasing, and Interpolation

7 Sampling

7.1 Representation of a Continuous-Time Signals: The Sampling Theorem
Generally we would not expect that a signal could be uniquely specified by a sequence of equally spaced samples in the 
absence of additional conditions or information. However, if a signal is band limited (zero Fourier transform outside a 
finite band of frequencies) and if the samples are taken sufficiently close to the highest frequency, then the samples 
uniquely specify the signal and it can be reconstructed perfectly. 

This result is the sampling theorem.

7.1.1 Impulse-Train Sampling
We need a convenient way in which to represent the sampling of a CTS.

We can do this by using a periodic impulse train multiplied by the CTS

This mechanism is called impulse-train sampling

Periodic impulse train   is called the sampling function

  is the sampling period

  is the sampling frequency

7.1.2 Sampling with a Zero-Order Hold
In this system, a CTS   is sampled at a given instant, and its value is held until the next sample is taken. 

p(t)

T

ω  /2π/Ts

x  (t) =p x(t)p(t) where p(t) =  δ(t −
n=−∞

∑
+∞

nT )

x(t)
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7.2 Reconstruction of a Signal From its Samples Using Interpolation
Fitting os a continuous signal to a set of example values is a commonly used procedure for reconstructing a function.

One example is the zero-order hold discussed previously.

Another example is to connect the sample points with a straight line. 

Interpolation using the impulse response of an ideal lowpass filter is also called band-limited interpolation, since it 
implements exact reconstruction of a CTS   if it’s band limited

7.3 The Effect of Undersampling: Aliasing
When  , the spectrum of   is no longer replicated and is thus no longer recoverable by lowpass 
filtering. 

When aliasing occurs, the original frequency takes on the identity of a lower frequency  

The sampling theorem explicitly requires that the sampling frequency be greater than twice the highest frequency in 
the signal.

x(t)

ω  <s 2ω  M x(t)

ω  −s ω  0
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Fundamentals of Continuous-Time Signals

1 Signals and Systems

1.5 Continuous-Time and Discrete-Time Systems
Systems are interconnection of components, devices, or subsystems. 

A continuous-time system is one in which CTS are applied and result in CTS outputs. 

we identify classes of systems with two important characteristics

The systems in this class have properties and structures we exploit to gain insight into their behaviour and to 
develop effective tools for their analysis

Many systems of practical importance can be accurately modelled using systems in this class. 

Interconnections of Systems
Series and parallel interconnections

We use the notation

1.6 Basic System Properties

Systems With and Without Memory
A system is memoryless if its output for each value is dependent only on the input value at the same time. 

  

x(t)

x[n]

→ y(t)

→ y[n]
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In many systems, memory is directly associated with the storage of energy

Invertibility and Inverse Systems
A system is invertible if distinct inputs lead to distinct outputs

Causality
A system is causal id the output at any given time depends only on values of the input at present time and past 

Also called nonanticipative as the system does not anticipate future values of the input.

All memoryless systems are causal

Stability
A stable system is one in which small inputs lead to responses that do not diverge

Time Invariance
A system is time invariant if its behaviour and characteristics are fixed over time.

For example, consider an RC circuit. If we run the circuit today, then again tomorrow, it will behave the same

2 Linear Time-Invariant Systems

2.2 Continuous-Time LTI Systems: The Convolution Integral
To develop CT counterpart of the discrete sifting property, we begin by considering a pulse approximation
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If we define

then   has unit amplitude and we can write a summation similar to DT case. As   approaches zero, the 
approximation becomes better and the limit becomes  .

Thus,

This is the sifting property of the continuous-time impulse. We also use the notation

2.3 Properties of Linear Time-Invariant Systems

2.3.1 The Commutative Property

in discrete time, and in continuous time

2.3.2 The Distributive Property

the above simply states that the response of an LTI system to the sum of two inputs must equal the sum of the 
responses to these signals individually

2.3.3 The Associative Property

δ  (t) =Δ  {
 , 0 ≤ t ≤ Δ

Δ
1

0,  otherwise

Δδ  (t)Δ Δ

x(t)

x(t) =  x(τ)δ(t −∫
−∞

+∞

τ) dτ

y(t) = x(t) ∗ h(t)

x[n] ∗ h[n] = h[n] ∗ x[n] =  h[k]x[n −
k=−∞

∑
+∞

k]

x(t) ∗ h(t) = h(t) ∗ x(t) =  h(τ)x(t −∫
−∞

+∞

τ) dτ

x[n] ∗ (h  [n] +1 h  [n]) =2 x[n] ∗ h  [n] +1 x[n] ∗ h  [n]2

x[n] ∗ (h  [n] ∗1 h  [n]) =2 (x[n] ∗ h  [n]) ∗1 h  [n]2

Fundamentals of Continuous-Time Signals 3



2.3.4 LTI Systems With and Without Memory
a system is memoryless if its output at any time depends only on the value of the input at that same time

if a discrete-time LTI system has an impulse response   not identically zero for  , then the system has 
memory

2.3.5 Invertibility of LTI System

2.3.6 Causality for LTI Systems

2.3.7 Stability for LTI Systems
if the impulse response is absolutely summable (absolutely integrable in the continuous case) or has finite action, 
then we call it BIBO stable

BIBO = bounded-input-bounded-output

2.3.8 The Unit Step Response of an LTI System
the step response of a discrete-time LTI system is the convolution of the unit step with the impulse response 

the unit impulse response if the first derivative of the unit step response 

2.4 Causal LTI Systems Described by Differential and Difference Equations
an important class of continuous-time systems is that for which the input and output are related through a linear 
constant-coefficient differential equation (LICC-ODE)

2.4.1 Linear Constant-Coefficient Differential Equations

DEs provide an implicit specification of the system, they describe a relationship between the input and output rather 
than an explicit expression

we emphasize that the condition of initial rest does not specify a zero initial condition at a fixed point in time, but 
rather adjusts this point in time so that the response is zero until the input becomes nonzero

2.4.2 Linear Constant-Coefficient Difference Equations

h[n] n = 0

h[n] ∗ h  [n] =1 δ[n]

h[n] = 0 for n < 0

s[n] = u[n] ∗ h[n]

h(t) =  =
dt

ds(t)
s (t)′

 +
dt

dy(t)
2y(t) = x(t)
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counterpart of the constant-coefficient derivative is the linear constant-coefficient difference equation

 a  y[n −
k=0

∑
N

k k] =  b  x[n −
k=0

∑
M

k k]
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Analysis of Continuous-Time Signals Using the 
Fourier Transform

3 Fourier Series Representation of Periodic Signals

3.3 Fourier Series Representation of Continuous-Time Periodic Signals

3.3.1 Linear Combinations of Harmonically Related Complex Exponentials
in chapter 1, we introduced the two basic periodic signals, the sinusoid   and the complex 
exponential  

both signals are periodic with a fundamental frequency and period, and have a set of harmonically related 
complex exponentials

3.3.2 Determination of the Fourier Series Representation of a Continuous-Time Periodic 
Signal

orthogonality

6 Time and Frequency Characterization of Signals and 
Systems

6.2 The Magnitude-Phase Representation of the Frequency Response of LTI 
Systems

when the magnitude or phase of the input signal is modified in an unwanted way, we call it a distortion

6.2.1 Linear and Nonlinear Phase

x(t) = cos ωt

x(t) = ejω t0

 e  dt =∫
0

T
j(k−n)ω  t0

 {
T ,  k = n

0,  k = n
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systems where magnitude is unchanged (unity-gain) is called an all-pass system

6.2.2 Group Delay

6.2.3 Log-Magnitude and Bode Plots

log ∣Y (jω)∣ = log ∣H(jω)∣ + log ∣X(jω)∣
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Analysis of Continuous-Time Signals Using the 
Laplace Transform

9 The Laplace Transform

9.1 The Laplace Transform
When we replace the   complex exponential variable with a general variable  , we have the Laplace transform

THe range of values of   for which the Laplace integral converges is called the region of convergence

If we express   as a rational function with numerator   and denominator  , then we say:

the roots of the numerator are called the zeroes of the function

the roots of the denominator are called the poles of the function

9.2 The Region of Convergence for Laplace Transforms
There are some specific constraints on the ROC for various classes of signals

Property 1: the ROC of   consists of strips parallel to the  -axis of the  -plane.

Property 2: for rational Laplace transforms, the ROC does not contain any poles.

Property 3: if   is of finite duration and is absolutely integrable, then the ROC is the entire s-plane

Property 4: if   is right-sided, and if the line   is in the ROC, then all values of   for which 

  will also be in the ROC.

Property 5: if   is left-sided, and if the line   is in the ROC, then all values of   for which 

  will also be in the ROC.

Property 6: If   is two-sided, and if the line   is in the ROC, then the ROC will consist of the strip 
in the s-place that includes the line  

Property 7: If the Laplace transform   of   is rational, then its ROC is bounded by poles or extends to 
infinity. In addition, no poles of   are contained in the ROC.

9.3 The Inverse Laplace Transform

jω s

X(s) =  x(t)e  dt∫
−∞

+∞
−st

s

X(s) N(s) D(s)

X(s) jω s

x(t)

x(t) Re{s} = σ  0 s

Re{s} > σ  0

x(t) Re{s} = σ  0 s

Re{s} < σ  0

x(t) Re{s} = σ  0

Re{s} = σ  0

X(s) x(t)
X(s)
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9.5 Properties of the Laplace Transform

9.5.1 Linearity of the Laplace Transform

9.5.2 Time Shifting 

9.5.3 Shifting in the s-Domain

9.5.4 Time Scaling

9.5.5 Conjugation

9.5.6 Convolution Property

9.5.7 Differentiation in the Time Domain

9.5.8 Differentiation in the s-Domain

9.9 The Unilateral Laplace Transform
We now introduce the unilateral Laplace transform

x(t) =   X(σ +
2π

1
∫

−∞

+∞

jω)e  dω =(σ+jω)t
  X(s)e  dω

2π

1
∫

−∞

+∞
st

ax  (t) +1 bx  (t)⟷2 aX  (s) +1 bX  (s)2

x(t − t  )⟷0 e X(s)−st  0

e x(t)⟷s  t0 X(s − s  )0

x(at)⟷  X(s/a)
∣a∣

1

x (t)⟷∗ X (s )∗ ∗

x  (t) ∗1 x  (t)⟷s X  (s)X  (s)1 2

 ⟷

dt

dx(t)
sX(s)

−tx(t)⟷  

ds

dX(s)

X(s) =  x(t)e  dt∫
0

∞
−st
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Fundamentals of Discrete-Time Signals

10 The z-Transform

10.8 System Function Algebra and Block Diagram Representation
The z-transform in discrete time allows us to replace time-domain operations with algebraic operations
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