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1 Coulomb’s Law

Summary

• The strength of a particle’s electrical interactions depend on its electric charge.

• Law of Electrostatic Forces → like charges repel, opposites attract.

• Electric current is defined as the rate at which charge passes through a point.

Coulomb’s Law

Describes the electrostatic force between two charged particles. See equation 2.

• Electrostatic force vector on one particle always acts towards or away from other articles.

• Electric charge is quantized to particular values, which are multiples of the elementary charge. This
was proven by the Millikan Oil Drop Experiment.

Shell Theorems

1. A charged particle outside a shell with a uniformly distributed charge is attracted or repelled
as if the charge is concentrated at the centre of the shell.

2. A charged particle inside a shell with a uniformly distributed charge experiences no net force
acting on it.

Conservation of Charge

The net charge in any closed system is always conserved.

Relevant Formulae

1. Electric current:

i =
dq

dt
(1)

2. Coulomb’s Law:

F =
1

4πε0

|q1||q2|
r2

(2)

where ε0 = 8.85 × 10−12C/N · m2 is the permittivity of free space and
1

4πε0
is replaced with k =

8.99× 109N ·m2/C2, or Coulomb’s constant.

3. The elementary charge e = 1.602× 10−19C.

2 Electric Fields

Summary

• We assume that each charge sets up an electric field around itself to analyze the forces acting on electric
charges.
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Electric Field Lines

Provide a means of visualizing the direction and magnitude of an electric field. The electric field
vector at any point is tangent to a field line through the point. The density of field lines in any region
is proportional to the magnitude of the electric field present in the region. Field lines originate on
positive charges and terminate on negative charges.

• Test charges are always positive and carry a small charge such that we can measure the force exerted
on the test charge but the test charge creates no electric field of its own.

• The electric field due to a continuous charge distribution is found by treating charge elements as point
charges and then summing the electric field vectors produced by all of the charges to find a net electric
field vector.

Relevant Formulae

1. Electric field:

E =
F

q0
(3)

where electric field has the unit N/C or V/m.

2. Electric field due to a point charge:

E = k
|q|
r2

(4)

3 Gauss’ Law

Summary

Gauss’ Law

Gauss’ Law and Coulomb’s Law are different ways of describing the relationship between charge and
electric fields in static situations. Coulomb’s Law can be derived from Gauss’ Law.

Relevant Formulae

1. Gauss’ Law:
ε0Φ = qenc (5)

where qenc is the net charge enclosed in an imaginary closed surface (a Gaussian surface) and Φ is the
net flux of the electric field through the surface. The units of electric flux is V ·m.

2. External electric field near the surface of a charged conductor perpendicular to the surface:

E =
σ

ε0
(6)

3. Electric field at any point due to a line of charge:

E =
λ

2πε0r
(7)

4. Electric field at any point due to an infinite non-conducting sheet:

E =
σ

2ε0
(8)
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5. Electric field outside a spherical shell of charge:

E = k
q

r2
(9)

6. Electric field inside a uniform sphere of charge is directed radially and has magnitude:

E =
q

4πε0R3
r (10)

4 Electric Potential

Summary

• Electric potential V at a point P in the electric field of a charged object is V where W∞ is the work
that would be done by the electric force on a small positive test charge were it brought from an infinite
distance to P . U is the potential energy that would be stored in the test charge-object system.

• All points on an equipotential surface have the same electric potential. The work done on a test charge
in moving it along an equipotential line is zero.

• The electric field E is always directed perpendicularly to corresponding equipotential surfaces.

• An excess charge placed on a conductor will be located entirely on the outer surface of the conductor
in the equilibrium state. The charge will distribute itself so that the following occurs:

– The entire conductor, including all interior points, is at a uniform potential.

– At every internal point, the electric field due to the charge cancels the external electric field that
would have been there.

– The net electric field at every point on the surface is perpendicular to the surface.

Electric Potential Energy

To find the electric potential energy of a system of charged particles, find the potential energy of each
pair of particles and add them together.

Relevant Formulae

1. Electric potential V at a point P in the electric field of a charged object is:

V =
−W∞

q0
=

U

q0
(11)

2. Electric potential V at a point P in the electric field of a charged object is:

U = q · V (12)

∆U = q∆V = q(Vf − Vi) (13)

3. If a particle moves through a change ∆V in electric potential without an applied force acting on it,
applying the conservation of mechanical energy gives the change in kinetic energy:

∆K = −q∆V (14)

4. If, instead, an applied force acts on the particle, doing work Wapp, the change in kinetic energy is:

∆K = −q∆V +Wapp (15)
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5. Electric potential difference between two points i and f is:

Vf − Vi = −
∫ f

i

E · ds (16)

6. In the special case of a uniform field of magnitude E, the potential chage between two adjacent
equipotential lines separated by distance ∆x is:

∆V = −E∆x (17)

7. Potential due to a charged particle:

V = k
q

r
(18)

where the potential due to a collection of charged particles is:

V = k

n∑
i=1

q

r
(19)

8. Potential due to a continuous charge distribution:

V = k

∫
dq

r
(20)

5 Capacitance

Summary

• We determine the capacitance of a particular capacitor configuration by:

– Assuming a charge q to have been placed on the plates,

– Finding the electric field E due to this charge,

– Evaluating the potential difference V , and

– Calculating C from q = CV .

• The electric potential energy U of a charged capacitor is equal to the work required to charge the
capacitor. This energy can be associated with the capacitor’s electric field E.

Dielectrics

If the space between the plates of a capacitor is completely filled with a dielectric material, the
capacitance C is increased by a factor κ.

Relevant Formulae

1. Capacitance C of a capacitor given by:
q = CV (21)

2. A parallel-plate capacitor has capacitance:

C =
ε0A

d
(22)

3. A cylindrical capacitor has capacitance:

C = 2πε0
L

ln(b/a)
(23)
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4. A spherical capacitor has capacitance:

C = 4πε0
ab

b− a
(24)

5. An isolated sphere has capacitance:
C = 4πε0R (25)

6. Capacitors in parallel:

Ceq =

n∑
j=1

Cj (26)

7. Capacitors in series:

1

Ceq
=

n∑
j=1

1

Cj
(27)

8. Potential energy of a charged capacitor:

U =
q2

2C
=

CV 2

2
(28)

9. Energy density within an electric field E:

u =
1

2
ε0E

2 (29)

10. When a dielectric is present, Gauss’ Law may be generalized to:

ε0

∮
κE · dA = q (30)

6 Current and Resistance

Summary

Ohm’s Law

A given device obeys Ohm’s Law if its resistance R is independent of the applied potential difference
V . A given material obeys Ohm’s Law if its resistivity is independent of the magnitude and direction
of the applied electric field E.

• Semiconductors are materials that have few conduction electrons but can become conductors when
they are doped with other atoms that contribute charge carriers.

• Superconductors are materials that lose all electrical resistance at low temperatures. Some materials
are superconducting at surprisingly high temperatures.

Relevant Formulae

1. Current is related to current density by:

i =

∫
J · dA (31)

2. Drift speed of the charge carriers:
J = (ne) · vd (32)
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3. Resistance R of a conductor is defined by:

R =
V

i
(33)

4. We define resistivity ρ and conductivity σ as:

ρ =
1

σ
=

E

J
(34)

5. Resistance R of a conducting wire is given by:

R = ρ
L

A
(35)

6. Change of resistivity with temperature is given by:

ρ− ρ0 = ρ0α(T − T0) (36)

7. Resistivity of a metal is given by:

ρ =
m

e2nτ
(37)

8. Power, or rate of energy transfer, is given by:

P = iV (38)

9. Resistive dissipation is given by:

P = i2R =
V 2

R
(39)

7 Magnetic Fields

Summary

The Hall Effect

The Hall Effect is when a conducting strip carrying a current i is placed in a uniform field B, some
charge carriers build up on one side of the conductor, creating a potential difference V across the
strip.

Relevant Formulae

1. A magnetic field B is defined in terms of the force FB acting on a test particle with charge q moving
through it with a velocity v:

FB = q(v ×B) (40)

where the unit for B is the tesla T = 1N/(A ·m).

2. A charged particle circulating in a magnetic field is governed by:

|q|vB =
mv2

r
(41)

from which we can find the radius:
r =

mv

|q|B
(42)

and gather that the frequency of the revolution of the particle is:

f =
ω

2π
=

1

T
=

|q|
B2πm

(43)

3. A straight wire carrying a current in a uniform magnetic field experiences a sideways force:

FB = iL×B (44)
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8 Magnetic Fields Due to Currents

Summary

Ampere’s Law

Ampere’s Law states that the the magnetic field integrated along a closed line known as an Amperian
loop is equal to the permeability of free space times the the current enclosed within the loop.

Relevant Formulae

1. The Biot-Savart Law asserts that the contribution dB to the field produced by a current-length element
ids at a point P is:

dB =
µ0

4π
=

ids× r̂

r2
(45)

2. Magnetic field of a long straight wire:

B =
µ0i

2πR
(46)

3. Magnetic field of a circular arc:

B =
µ0iφ

4πR
(47)

4. Force between parallel currents is given by:

Fba = ibLBa sin 90 =
µ0Liaib
2πd

(48)

5. Ampere’s Law: ∮
B · ds = µ0ienc (49)

6. Magnetic field inside of a solenoid and a toroid:

B = µ0in (solenoid) (50)

B =
µ0iN

2πr
(toroid) (51)

9 Induction and Inductance

Summary

Faraday’s Law of Induction

Faraday’s Law of Induction states that if the magnetic flux through an area bounded by a closed
conducting loop changes over time, a current and emf are produced. This process is called induction.

Lenz’ Law

Lenz’s Law states that an induced current has a direction such that the magnetic field due to the
current opposes the change in the magnetic flux that causes the current. This induced emf has the
same direction as the induced current.

• An inductor is a device that can be used to produce a known magnetic field in a specified region. If a
current i is established through each of the N windings of an inductor, a magnetic flux ΦB links those
windings.
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• If a current i in a coil changes with time, an emf is induced in the coil.

• This self-induced emf acts to oppose the change that produces it.

Energy Stored in an Inductor

If an inductor L carries a current i, the inductor’s magnetic field stores an energy given by:

UB =
1

2
Li2 (52)

• Mutual induction is when a changing current in one coil can induce an emf in the other.

Relevant Formulae

1. Magnetic flux ΦB is defined as:

ΦB =

∫
B · dA (53)

2. Faraday’s Law:

emf = −dΦB

dt
= −N

fΦB

dt
(54)

3. Emf and the induced electric field:

emf =

∮
E · ds (55)∮

E · ds = −dΦB

dt
(56)

4. The inductance L of the inductor is:

L =
NΦB

i
(57)

L

l
= µ0in

2A (solenoid) (58)

5. Self-induced emf is given by:

emfL = −L
di

dt
(59)

6. Series RL circuits:

i =
emf

R
(1− e−t/τL) (rise of current) (60)

i = i0e
−t/τL (decay of current) (61)

7. Density of stored magnetic energy is given by:

uB =
B2

2µ0
(62)
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10 Basic Concepts

Summary

• The passive sign convention states that the product of voltage and current associated with an element
determines the magnitude or sign of the power.

– If the product is positive, power is absorbed by the element.

– If the product is negative, power is being supplied by the element.

• An ideal independent voltage source is a two-terminal element that maintains a specified voltage
between its terminals, regardless of the current across through the element.

• Dependent or controlled sources generate a voltage or current that is determined by the voltage or
current at a specified location in the circuit.

Conservation of Energy

The electric circuits under investigation satisfy the conservation of energy.

Tellegen’s Theorem

The sum of the powers absorbed by all the elements in an electrical network is zero.

Relevant Formulae

1. Relationship between current and charge:

i(t) =
d1(t)

dt
or q(t) =

∫ i

−∞
i(x) dx (63)

2. Relationships among power, energy, current, and voltage:

p =
dw

dt
= vi (64)

∆w =

∫ t2

t1
p · dt =

∫ t2

t1
vi · dt (65)

11 Resistive Circuits

Summary

• Ohm’s Law: V = iR

• Passive sign convention with Ohm’s Law states that current enters the resistor terminal with positive
voltage reference.

Kirchoff’s Current Law

Algebraic sum of currents leaving a node is zero.

Use with Ohm’s Law to solve a single-node-pair circuit.
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Kirchoff’s Voltage Law

Algebraic sum of voltage around a closed path is zero.

Use with Ohm’s Law to solve a single-loop circuit.

• The voltage-division rule → The voltage is divided between two series resistors in direct proportion to
their resistance.

• The current-division rule → The current is divided between two parallel resistors in reverse proportion
to their resistance.

• Short circuit → Zero resistance and voltage, current is determined by the remainder of the circuit.

• Open circuit → Zero conductance, zero current, the voltage across the open terminals is determined
by the rest of the circuit.

12 Nodal and Loop Analysis Techniques

Summary

Nodal Analysis for an N-node Circuit

1. Determine the number of nodes in the circuit. Select one node as the reference node.

(a) Assign a node voltage between each reference and non-reference node. All node voltages are
assumed positive with respect to the reference node.

(b) For an N -node circuit, there are N − 1 node voltages and N − 1 linearly independent node
equations must be written.

2. Write a constraint equation for each voltage source in terms of the assigned node voltages using KVL.

(a) Each constraint equation represents one of the necessary linearly independent equations and Nv

voltage sources yield Nv equations.

(b) For each dependent voltage source, express the controlling variable for that source in terms of the
node voltages.

3. A voltage source may be connected between a non-reference node and reference node, or between two
non-reference nodes. A supernode is formed by a voltage source and its two connecting non-reference
nodes.

4. Use KCL to formulate the remaining N − 1−Nv equations. First, apply KCL at each reference node
not connected to a voltage source.

(a) Second, apply KCL at each supernode.

(b) Treat dependent current sources like independent current sources when formulating the KCL
equations.

(c) For each dependent current source, express the controlling variable in terms of the node voltages.

Loop Analysis for an N-loop Circuit

1. Determine the number of independent loops in the circuit. Assign a loop current to each independent
loop. For an N -loop circuit, there are N -loop currents.

(a) As a result, there are N linearly independent equations that must be solved.

2. If current sources are present in the circuit, either of the two techniques can be employed.
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(a) In the first case, one loop current is selected to pass through one of the current sources. The
remaining loop currents are determined by open-circuiting the current sources in the circuit and
using this modified circuit to select them.

(b) In the second case, a current is assigned to each mesh in the circuit.

3. Write a constraint equation for each current source—independent or dependent—in the circuit in terms
of the assigned loop currents using KCL. Each constraint equation represents one of the necessary
linearly independent equations, and N1 current sources yield N1 linearly independent equations.

(a) For each dependent current source, express the controlling variable for that source in terms of the
loop currents.

4. Use KVL to formulate the remaining N - N1 linearly independent equations. Treat dependent voltage
sources like independent voltage sources when formulating the KVL equations.

(a) For each dependent voltage source, express the controlling variable in terms of the loop currents.

13 Additional Analysis Techniques

Summary

• Linearity: This property requires both additivity and homogeneity.

– We can determine the voltage/current somewhere in a network by assuming a specific value for
the variable, then determining what source value is required to produce it.

– The ratio specified source value
assumed value can be used to obtain a solution.

• In a linear network containing multiple independent sources, the principle of superposition allows
us to compute any current or voltage in the network as the algebraic sum of the individual contributions
of each source acting alone.

• Superposition does not apply to power dissipation.

• Using Thevenin’s theorem, we can replace some portion of a network at a pair of terminals with:

– A voltage source VOC , which is the open-circuit voltage at the terminals, and

– The Thevenin equivalent resistance RTh obtained by setting all independent sources to 0.

• Using Norton’s theorem, we can replace some portion of a network at a pair of terminals with a
current source ISC in parallel with a resistor.

– ISC is the short-circuit current at the terminals.

• Maximum power transfer can be achieved by selecting the load RL to be equal to RTh found by looking
into the network from the load terminals.

14 First-Order Transient Circuits

Summary

• An RC or RL is said to be first-order only if it contains a single capacitor or a single inductor. The
voltage of current anywhere in the network can be obtained by solving a first-order differential equation.

• The function e−tτ decays to a value that is less than 1% of its initial value after a period 5τ . Therefore,
the time constant determines the time required to reach steady state.
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Relevant Formulae

1. The form of a first-order differential equation with a constant forcing function is:

dx(t)

dt
+

x(t)

τ
= A (66)

and the solution to this ODE is:
x(t) = K1 +K2e

−t/τ (67)

2. The time constant is calculated by:

τ = R · C for capacitors (68)

τ =
L

R
for inductors (69)

15 AC Steady-State Analysis

Summary

• The sinusoidal function definition: The sinusoidal function x(t) = XM sin(ωt+θ) has an amplitude
of XM , a radian frequency of ω, a period of 2π/ω, and a phase angle of θ.

• The phase lead and lag definition: If x1(t) = XM1
sin(ωt+ θ) and x2(t) = XM2

sin(ωt+Φ), then
x1(t) leads x2(t) by θ − Φ radians, and x2(t) lags x1(t).

• The phasor definition: The sinusoidal voltage v(t) = VM cos(ωt+ θ) can be written in exponential
form as v(t) = Re[VMej(ωt+θ)] and in phasor form as V = VMθ.

• The phasor relationship in θv and θi for elements R, L, and C:

– θi and θv if the element is a resistor.

– θi lags θv by 90 if the element is an inductor.

– θi leads θv by 90 if the element is a capacitor.

• The impedances of R, L, and C: Impedance, Z is defined as the ratio of the phasor voltage, V ,
to the phasor current, I, where Z = R for a resistor, Z = jωl for an inductor, and Z = 1/jωC for a
capacitor.

• The phasor diagrams: Phasor diagrams can be used to display the magnitude and phase relationships
of various voltages and currents in a network.

• Frequency domain analysis:

– Represent all voltages and currents as phasors and represent all passive elements by their impedance
or admittance.

– Solve for the unknown phasors in the frequency ω domain.

– Transform the now-known phasors back to the time domain.

Relevant Formulae

1. Sinusoidal function:
x(t) = XM sin(ωt+ θ) (70)

2. Impedance: 
Z = R resistors

Z = jωl inductors

Z = 1/jωl capacitors

(71)
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