
APS106: Fundamentals of Computer Programming

Arnav Patil

Department of Electrical and Computer Engineering, University of Toronto

1



Week 1 Jan 8  Jan 12 1

Week 1 (Jan 8 - Jan 12)

Chapter 1

1.1 Programming
Basic instruction types are INPUT, PROCESS, and OUTPUT.

Computational thinking - creating a sequence of instructions to solve problems

Algorithms - series of instructions

1.2 Programming using Python
Python interpreter - program executing Python code

Interactive interpreter - allows user to execute one line at a time

Statement - Program instruction

1.3 Development environment
Integrated Development Environment - code development is usually done in an integrated 
development environment

1.4 Computers and programs
Switches control whether electricity flows through a wire or not.

Processors are circuits created to execute a list of instructions. Memory circuits store lists in 
addressed locations.

Machine instructions - instructions represented as binary, combine to form executables

Programmers then made assembly language instructions to make code higher level

Compilers - Programs that automatically translate high-level language into executable programs.

1.5 Computer tour
Processor clock ticks measure the number of instructions a processor can execute per second.



Week 1 Jan 8  Jan 12 2

In 1958, engineers created the first transistors, which are switches integrated onto a chip.

Moore’s Law dictates the number of transistors on an IC has doubled nearly every 18 months 
since invention.

Cores are multiple processors location on one single chip.

1.6 Language History
Scripting languages execute programs without the need for compilation.

1.7 Why whitespace matters
Whitespace → any block space or newline

2.2 Identifiers
PEP8 (Python Enhancement Proposal) outlines basics of how to write neat and consistent code

2.3 Objects
Represent a value and is automatically created by interpreter

Name binding - process of associating names with an interpreter object

Object mutability tells whether object value is allowed to be changed

2.4 Numeric types: floating point
Floating point numbers have decimals.

Floating point literal is written w/ fraction part, even if it is zero.



Week 2 Jan 15  Jan 19 1

Week 2 (Jan 15 - Jan 19)
1.8 Basic input/output
Newline → Output after every print()

Can use end = ‘ ’ inside print() to keep output of next print statement on the same line

Output in same print() command by printing \n

2.8 Heading basics
Module → file containing Python code that can be used by other modules/scripts

Made available for use by import statement

Once imported, any object defined is accessed by using dot notation

3.1 Print functions
A function w/ no return statement is called a void airport

3.2 User-defined function basics
Function definition → consists of function’s name and block of statements

Function call → invocation of the function’s name

Function may return a single value using a return statement

3.3 Dynamic typing
Python uses dynamic typing to determine type of object

Unlike lower-level languages which use static typing

3.6 Functions stub
Incremental development → small amount of code written and tested at a time

Function stub → function definitions whose statements haven’t been written yet



Week 2 Jan 15  Jan 19 2



Week 3 Jan 22  Jan 26 1

Week 3 (Jan 22 - Jan 26)
4.1 If-else branches (general)
Branches are like steering people to different-sized tables based on group sizes

If → only taken only if an expression evaluates to True

If-else branches can be extended into another structure

4.2 Detecting equal values
Equality operator (==) → evaluates to True if left and right sides are equal

Inequality operator (!=) → evaluates to True if left and right sides are NOT equal



Week 4 Jan 29  Feb 2 1

Week 4 (Jan 29 - Feb 2)
7.1 Loops (general)
Program that executes loop’s statements (body)

Each run through the code is called an iteration

7.2 While loops
Repeatedly executes the body the loop while the loop’s evaluation is True.



Week 5 Feb 5  Feb 9 1

Week 5 (Feb 5 - Feb 9)

Chapter 2

2.3 Objects
An object represents a value and is automatically created by the interpreter when executing a line 
of code. Note that programmers do not explicitly create objects, the interpreter creates and 
manipulates objects as needed to run the given code. 

Objects are used to represent everything in a Python program, including integers, strings, 
functions, lists, etc.

After an object has been used and is no longer necessary, it is automatically deleted from 
memory and then thrown away. This process of deleting unused objects is called garbage 
collection.

Name binding is the process of associating names with interpreter objects. An object can have 
more than one name bound to it, but every name is associated with only one object.

Each Python object has the value: 

1. Value: a value such as 20, “abcdef”, etc.

2. Type: the type of the object, such as an integer or string.

3. Identity: a unique identifier that describes the object.

The built-in function type( )  returns the type of an object.

The object’s type also determines its mutability, which indicates whether the object’s value is 
allowed to change. Integers and strings are immutable. When either of these are manipulated, a 
new object with the same name and new given value is generated.

The built-in function id( )  gives the identity of an object.

Chapter 5

5.1 String basics



Week 5 Feb 5  Feb 9 2

A string is a sequence of characters, that can be stored in a variable. A string literal is a string 
value specified in the source code of the program.

The string type is a special construct known as a sequence type: a type that specifies a collection 
of objects ordered from left to right.

The len()  function is used to find the length of a string.

A programmer can access a character at a specific index by appending brackets [ ] containing the 
index.

Writing or altering individual characters of a string variable is not allowed, since they’re 
immutable. An assignment statement must be used to update an entire string variable.

A program can add new characters to the end of a string in a process known as string 
concatenation. String concatenation does not contradict string immutability, since new variables 
are generated.

5.2 String formatting
A formatted string literal, also known as an f-string, allows a programmer to create a string with 
placeholder expressions that are evaluated as the program executes. An f-string starts with an f 
character before the starting quote and uses curly braces { } to denote the placeholder 
expressions. A placeholder expression is also called a replacement field.

number = 6

number = 32

print(f'{number} burritoes cost ${amount}')

An = sign is provided after the expression in a replacement field to print both the expression and 
its result, which is a useful debugging technique when dynamically generating lots of strings and 
output.

A format specification inside a replacement field allows a value’s formatting in the string to be 
customized. This is introduced with a colon in the replacement field, it separates the “what” on 
the left from the “how” on the right. 

A presentation type is part of a format specification that determines how to represent a value in 
text form, such as an integer, a floating point, and so on. This is also introduced using a colon in 
the replacement field. 



Week 5 Feb 5  Feb 9 3

5.9 Type conversions
A type conversion is a conversion of one type to another, such as an integer to a float.

An implicit conversion is a type conversion made automatically by the interpreter.

Chapter 6

6.1 String splicing
Strings are a sequence type, having characters numbered by index from left to right. An index is 
an integer matching each position in a string’s sequence of characters. 

Slice notation has the my_str[start:end]  , which creates a new strong whose value contains the 
relevant characters in the string.

Omitting a start index yields the characters from indices 0 to the end - 1 spot. Similarly, omitting 
the end index yields the characters from the start index to the end of the string. 

The stride determines how much to increment the index after reading each element. 

6.2 Advanced string formatting
A format specification may include a field width, which defines the minimum number of 
characters that must be inserted into the string.

A format specification can also include an alignment that detrmines how a value should be 
aligned within the width of the field.

The fill character is used to pad a replacement field when the inserted string is smaller than the 
field width.

The optional precision component of a format specification indicates how many digits should be 
included in the output of floating types. The precision follows the field width component in the 
format specification. 

6.3 String methods
The replace(old,new)  function returns a copy of the string with all occurrences of the substring 
old replaced by the substring new.



Week 5 Feb 5  Feb 9 4

Similarly, the replace(old,new,count)  does the same but only replaces the first specified number 
of occurrences. 

Some more methods:

find(x) Returns the index of the first occurrence of item x in the string.

find(x,start) Same as above but starts search at the start index.

find(x,start,end) Same as above but ends search at the end index.

rfind(x) Same as above but searches the first occurrence of the string in reverse order.

Methods for creating new strings from an existing string:

capitalize() Returns a copy of the strong w/ the first character capitalized

lower() Returns a copy with all characters in lower case

upper() Returns a copy with all characters in upper case

strip() Removes all leading and trailing whitespaces removed.

title() Returns the string but in title case

6.4 Splitting and joining strings
The split()  method splits a string into a list of tokens, which are substrings that form the larger 
string. A separator is a character or sequence that indicated where to split the string into tokens.

The  join() performs the inverse operation, by joining a list of strings together to create a single 
string.

6.5 String formatting using %
A string formatting expression allowed a programmer to create a string with placeholders that are 
replaced by the values of the variables. This placeholder is called a conversion specifier.

6.6 String formatting using format()
This method allows a programmer to create a string with placeholders that are replaced by values 
or variable values at execution. 

number = 6

amount = 32



Week 5 Feb 5  Feb 9 5

print('{} burritos cost ${}'.format(number,amount))

Named replacement allows a programmer to create a keyword argument, which defines a name 
and value in the format() parentheses. Good practice is to use named replacement when 
formatting strings with many replacement fields to make the code more readable.

Chapter 11

11.1 Readings files
A common programming task is to retrieve input from a file using the open()  function. 

The file.readline()  method returns a list of strings, where the contents of the file is split into 
contents of each line as a separate string.

11.4 The ‘with’ statement
A with statement can be used to open a file, execute a block of statements, and automatically 
close the file when complete. The method creates a context manager, which manages the use of a 
resource by performing set-up and teardown operations. 



Week 6 Feb 12  Feb 16 1

Week 6 (Feb 12 - Feb 16)

Chapter 3

3.14 Functions with branches/loops 
A function’s block of statements may include branches, loops, and other statements.

Chapter 7

7.5 For loops
A for loop statement loops over each element in a container one at a time, assigning a variable 
with the next element that can then be used in the loop body.

The container in a for loop is typically a list, tuple, or string.

A for loop may also iterate backward over a sequence, starting at the last element and ending 
with the first element by using the reversed() function.

7.6 Counting using the range()  function
Range() generates a sequence of integers between a starting point that is included in the range, 
and an ending integer that is not included, as well as an integer step value.

7.7 While vs. for loops
A for loop combined with the range() function is generally preferred over while loops. 

General rules:

1. Use a for loop when the the number of iterations is computable before entering the loop.

2. Use a for loop when accessing the elements of a container.

3. Use a while loop when the number of iterations is not computable before entering the loop.

7.8 Nested loops



Week 6 Feb 12  Feb 16 2

A nested loop is a loop that appears as part of the body of another loop. They are commonly 
referred to as the inner and outer loops. 

7.9 Developing programs incrementally
Experienced programmers practice incremental programming by starting with a simple version 
of the program and growing the program little by little into a complete version.

A #FIXME comment attracts attention to code that needs to be fixed in the future.

7.10 Break and continue
A break statement in a loop causes to exit immediately. It can also yield a loop that is easier to 
understand.

A continue statement in a loop causes an immediate jump to the while or for loop header 
statement. It improves the readability of the loop.

7.11 Loop else
A loop may include an else clause that executes only if the loop terminates normally and doesn’t 
use a break statement.

The loop else construct executes if the loop completes normally.

7.12 Getting both index and value when looping: enumerate( 
)

The enumerate( )  function retrieves both the index and corresponding element value at the same 
time, providing a cleaner and more readable solution. It yields a new tuple each iteration of the 
loop, with the tuple containing the current index and corresponding element value. 

Unpacking is a process that performs multiple assignments at once, binding comma-separated 
names on the left to the elements on the right. 



Week 7 Feb 26  Mar 1 1

Week 7 (Feb 26 - Mar 1)

Chapter 5

5.3 List basics
A container is a construct used to group related values together and contains references to other 
objects instead of data.

A list is a container created by surrounding a sequences of variables or literals with brackets [ ].

For example, my_list = [10, 'abc']  creates a new list. Each item in the list is called an element.

Lists are sequences, meaning the contained elements are ordered by position in the list, known as 
the element’s index, starting with 0. 

my_list = [ ]  creates an empty list.

Individual list elements can be accessed using an indexing expression by using brackets.

Lists, unlike strings and integers, are mutable.

A method instructs an object to perform some action, and is executed by specifying the method 
name following a ‘.’ symbol and an object. Some commands to add or remove list elements:

append() Add new elements to a list

pop() Used to remove an element from a list

remove() Used to remove an element from a list

Sequence-type functions are built-in functions that operate on sequences like lists and strings. 
Similarly, there are sequence-type methods built into the class definitions like lists and strings.

Operation Description

len(list) Finds the length of the list

list1 + list2 Produce a new list by concatenating list2 to the end of list1

min(list) Find the element in the list with the smallest value.

sum(list) Find the sum of all elements of a list

list.index(val) Find the index of the first element in the list whose value matches val



Week 7 Feb 26  Mar 1 2

Operation Description

list.count(val) Count the number of occurrences of val in the list.

Chapter 8

8.3 Iterating over a list
Iterating over each element in a list is so common that Python uses a special for loop.

IndexError and enumerate( )
A common error is to try to access the list with an index that is out of the list’s range. This causes 
the program to automatically terminate execution and generate an IndexError. 

The built in function enumerate()  iterates over a list and provides an iteration counter.  

8.5 List nesting
A list contain a list within itself as an object.

List nesting allows a user to create a multi-dimensional data structure like a matrix.

A programmer can access all of the elements in a nested list by using nested for loops.

8.6 List slicing
A programmer can use slice notation to real multiple elements from a list, creating a new list that 
contains only the desired elements.

An optional element of slice notation is the stride, which indicates how many elements are 
skipped between extracted items in the source list.

8.7 Loops modifying lists
Sometimes a program iterates over a list while modifying the elements, such as changing some 
elements' values or moving elements' positions.

A common error when modifying a list during iteration is to update the loop variable instead of 
the list.

A common error is to add or remove a list element while iterating over that list.



Week 7 Feb 26  Mar 1 3

8.8 List comprehension
The Python language provides a convenient construct, known as list comprehension, that iterates 
over a list, modifies each element, and returns a new list of the modified elements.

new_list = [expression for loop_variable_name in iterable]

A list comprehension has three components:

1. An expression component to evaluate for each element in the iterable object.

2. A loop variable component to bind to the current iteration element.

3. An iterable object component to iterate over (list, string, tuple, enumerate, etc).

8.9 Sorting lists
One of the most useful list methods is sort() , which performs an in-place rearranging of the list 
elements, sorting the elements from lowest to highest.

The sorted()  built-in function provides the same sorting functionality as the list.sort()  
method, however, sorted()  creates and returns a new list instead of modifying an existing list.

Sorting also supports the reverse argument. The reverse argument can be set to a Boolean value, 
either True  or False . Setting reverse=True  flips the sorting from lowest-to-highest to highest-
to-lowest. Thus, the statement sorted([15, 20, 25], reverse=True)  produces a list with the 
elements  [25, 20, 15] .



Week 8 Mar 4  Mar 8 1

Week 8 (Mar 4 - Mar 8)

Chapter 5

5.4 Tuple basics
A tuple stores a collection of data but is immutable. Similar to a list, it is also a list type.

Not as common as a list in practical usage but can be useful when a programmer wants to ensure 
that values do not change.

A named tuple allows the programmer to define a new simple data type that consists of named 
attributes.

from collection import namedtuple

Car = namedtuple('Car', ['make', 'model', 'price', 'horsepower',

chevy_blazer = Car('Chevrolet', 'Blazer', 32000, 275, 8)

print(chevy_blazer)

>>> Car(make='Chevrolet', model='Blazer', price=32000, horsepowe

5.5 Set basics
A set is an unordered collection of unique elements. It has the following properties:

1. Elements are unordered: elements in the set do not have a position index or value.

2. Elements are unique: no elements in the set share the same value.

A set that can be created using the set( )  function, which accepts a sequence-type iterable 
object. A set literal can be written using curly braces  which commas separating set elements.

Sets are mutable - elements can be added or removed using set methods. 

{ }



Week 8 Mar 4  Mar 8 2

5.6 Dictionary basics
A dictionary is a Python container used to describe associative relationships. A dictionary is 
represented by the dict object type. 

A key is a term that can be located in a dictionary. A value describes some data associated with a 
key, such as a definition. 

A dict object is created using curly braces to surround the key:value pairs that comprise the 
dictionary components.

If no entry with a matching key exists in the dictionary, then a KeyError runtime error occurs 
and the program is terminated.

5.7 Common data types summary

Type Examples

Numeric
Integer
Float

Sequence

String
List
Tuple
Set

Mapping Dictionary

5.9 Type conversions
A type conversion is a conversion of one data type to another.

An implicit conversion is a type conversion automatically made by the interpreter

1 + 2 # returns an int type

1 + 2.0 # returns a float type

1.0 + 2.0 # returns a float type

Chapter 8



Week 8 Mar 4  Mar 8 3

8.12 Dictionaries
Some approaches to create a dict:

1. The first approach wraps braces   around key-valuue pairs of literals and/or variables 
creates a dictionary with keys.

2. The second approach uses dictionary comprehension, which evaluates a loop to create a new 
dictionary, similar to how list comprehension creates a new list. → OUT OF SCOPE

3. Other approaches use the dict function

8.13 Dictionary methods
A dictionary method is a function provided by the dictionary type that operates on a specific 
dictionary object.

8.14 Iterating over a dictionary
A for loop can be used to iterate over a dictionary object, with the loop variable set to a key of an 
entry in each iteration. The order in which the jeys are iterated is not necessarily the order in 
which the elements were inserted in the dictionary.

The Python interpreter creates a hash of each key, which is a transformation of the key into a 
unique value that allows the interpreter to perform fast lookup. So, the ordering is determined is 
determined by the hash value, but hash values can change depending on the Python version and 
other factors. 

A view object provides read-only access to dictionary keys and values. A program can iterate 
over a view object to access one key-value pair, one key, or one value at a time, depending on the 
method used.

8.15 Dictionary nesting
A dictionary may contain one or more nested dictionaries, in which the dictionary contains 
another dictionary as a value. 

A data structure is a method of organizing data in a logical and coherent fashion. Container 
objects like lists and dicts are already a form of a data structure, but nesting such containers 
provides a programmer with much more flexibility in the way that the data can be organized.

{ }



Week 8 Mar 4  Mar 8 4

8.16 String formatting using dictionaries

Mapping keys
Sometimes a string contains many conversion specifiers. Such strings can be hard to read and 
understand. Furthermore, the programmer must be careful with the ordering of the tuple values in 
case items are mistakenly swapped. 



Week 9 Mar 11  Mar14 1

Week 9 (Mar 11 - Mar14)

Chapter 3

3.15 Multiple function outputs
A return statement that returns multiple outputs, separated by commas, returns them as a tuple by 
default. It can also be made to return as a list, or another type of variable:

return [mean, std_dev] # this return statement outputs a list

return mean, std_dev

return (mean, std_dev) # both of these return tuples

Unpacking is an operation that allows a statement to perform multiple assignments at once. 
These variables come from a tuple or list (ordered containers). 

average, std_dev = get_grade_stats(student_scores)

# the first, or zeroth, variable in the tuple 'student_scores' g

# average, and the second, or first, variable gets saved to std_

3.16 Keyword arguments and default parameter values
Python provides for keyword arguments to allow for users to input their parameters by name 
rather than an implicit order, which might be confusing if there are a lot of input parameters.

def print_car_info(make, model, year, engine)

# prints car info

print_car_info(make='Ford', model='Escape', year=2018, engine=5

Good practice is to use keyword arguments for any function containing more than approximately 
four arguments.



Week 9 Mar 11  Mar14 2

Sometimes a function has parameters that are optional. A function can have a default parameter 
value for one or more parameters, meaning that a function call can optionally omit an argument, 
and the default parameter value will be substituted for the corresponding omitted argument.

A parameter's default value is the value used in the absence of an argument in the function call.

3.17 Arbitrary argument lists
A function definition can include an *args parameter that collects optional positional parameters 
into an arbitrary argument list tuple.

Adding a final function parameter of **kwargs, short for keyword arguments, creates a 
dictionary containing "extra" arguments not defined in the function definition. The keys of the 
dictionary are the parameter names specified in the function call.



Week 10 Mar 18  Mar 22 1

Week 10 (Mar 18 - Mar 22)

Chapter 9

9.1 Classes: introduction
In programming, an object is a grouping of data (variables) and operations that can be performed 
on that data (methods).

Abstraction/information hiding
Abstraction occurs when a user interacts with an object at a high level, allowing lower-level 
internal details to remain hidden (aka information hiding or encapsulation).

An abstract data type (ADT) is a data type whose creation and update are constrained to specific 
well-defined operations. A class can be used to implement an ADT.

Python built-in objects
Python automatically creates built-in objects for a programmer to use and include the basic data 
types like integers and strings.

9.2 Classes: grouping data
The class keyword can be used to create a user-defined type of object containing groups of 
related variables and functions.

The object maintains a set of attributes that determines the data and behaviour of the class.

class Time:

def __init__(self):

self.hours = 0

self.minutes = 0

An instantiation operation is performed by ‘calling’ the class, using parentheses like a function 
call as in my_time = Time( ) . 

An instantiation operation creates an instance, which is an individual object of the given class. 



Week 10 Mar 18  Mar 22 2

A method is a function defined within a class. The __init__ method, commonly known as a 
constructor, is responsible for setting up the initial state of the new instance. 

Attributes can be accessed using the attribute reference operator "." (sometimes called 
the member operator or dot notation).

9.3 Instance methods
A function defined within a class is known as an instance method. An instance method can be 
referenced using dot notation.

class Time:

def __init__(self):

self.hours = 0

self.minutes = 0

def print_time(self):

print(f'Hours: {self.hours}', end=' ')

print(f'Minutes: {self.minutes}')

9.4 Class and instance object types
A class object acts as a factory that creates instance objects. When created by the class object, 
an instance object is initialized via the __init__ method.

A class attribute is shared among all instances of that class. Class attributes are defined within 
the scope of a class.

9.7 Class interfaces
A class interface consists of the methods that a programmer calls to create, modify, or access a 
class interface. 

Class customization can redefine the functionality of built-in operators like <, >=, +, -, and * 
when used with class instances, a technique known as operator overloading.



Week 11 Mar 25  Mar 29 1

Week 11 (Mar 25 - Mar 29)

Chapter 10

10.1 Modules
A module being required by another program is called a dependency.

Evaluating an import statement initiates the following process to load the module:

1. A check is conducted to determine whether the module has already been imported. If already 
imported, then the loaded module is used.

2. If not already imported, a new module object is created and inserted in sys.modules.

3. The code in the module is executed in the new module object's namespace.

A dictionary of the loaded modules is stored in sys.modules (available from the sys standard 
library module). If the module has not yet been loaded, then a new module object is created. 
A module object is simply a namespace that contains definitions from the module. If the module 
has already been loaded, then the existing module object is used.

10.3 Importing names
A programmer can specify names to import from a module by using the from keyword in an 
import statement.

10.6 Packages
A package is a directory that, when imported, gives access to all of the modules stored in the 
directory. Large projects are often organized using packages to group related modules.

The from technique of importing also works with packages, allowing individual modules or 
subpackages to be directly imported into the global namespace. A benefit of this method is that 
higher-level package names need not be specified.



Week 12 Apr 1  Apr 5 1

Week 12 (Apr 1 - Apr 5)

Chapter 12

12.1 Introduction to data science
Data science is an interdisciplinary field focused on discovering patterns and describing 
relationships using data. Data science uses techniques from computer science and statistics. 

Data scientists can also build, test, and interpret a data model, a representation of a real-life system 
that organizes data elements and informs how the elements relate to one another.

Features are recorded for individual instances, or observational units, in the dataset.

Big data describes datasets with large volume, created and updated with high velocity, that have 
variety in structure and format.

12.2 Data science life cycle
The data science life cycle is a five-step process for completing a research project using data. In 
some organizations, data scientists are involved in every step of the data science life cycle.

Step Description

Step 1: Gathering data Identify available and relevant data; gather new data if needed.

Step 2: Cleaning data Reformat datasets, create new features, and address missing values.

Step 3: Exploring data
Create data visualizations and calculate summary statistics to explore potential
relationships in the dataset.

Step 4: Modelling data
Use modelling skills and content knowledge to fit and evaluate models, measure
relationships, and make predictions.

Step 5: Interpreting data
Describe and interpret conclusions from data through written reports and
presentations.

Step 1: Gathering data
Structured data is stored in a pre-defined format, typically with features stored in columns and 
instances in rows. Unstructured data does not have a predefined format and is difficult for humans 
to interpret.



Week 12 Apr 1  Apr 5 2

Step 2: Cleaning data
Most software packages and programming languages require datasets to be structured as a table with 
features in columns and instances in rows. Data scientists combine data from multiple sources or file 
types while making sure the final dataset is in the proper format.

Step 3: Exploring data
During exploratory data analysis, data scientists use plots and graphs to search for meaning in a 
dataset. Visualizations help data scientists recognize patterns or trends in a dataset, identify unusual 
observations, and brainstorm appropriate models. Summary statistics like the mean and median are 
often calculated during the exploration step.

Step 4: Modelling data
Models that predict a feature with known values in the original dataset are supervised models.

Classification models predict categorical features.

Regression models predict numerical features.

Unsupervised models look for hidden groups or patterns in the dataset rather than predicting a 
known feature.

Step 5: Interpreting data
Data scientists must effectively interpret the results of a model and communicate findings to 
technical and non-technical audiences. After interpreting data, data scientists may decide that a 
model needs to be adapted for changing circumstances or new data.

12.3 Introduction to Python for data science

Advantages Disadvantages

Readability: Python reads like English, and functions
from the same library use consistent syntax. 

Consistency: Different libraries may have different
syntax conventions.

Popularity: Python is popular in data science and
elsewhere in industry, which means resources for
learning Python are widely available.

Memory: Python uses more computer memory than
other programming languages.

Innovation: New data science models and
technologies are constantly added to Python.

Speed: Other programming languages such as Julia
perform computations on datasets more quickly than
Python.



Week 12 Apr 1  Apr 5 3

Import name Common alias Description

numpy np
NumPy includes functions and classes that aid in numerical
computation. NumPy is used in many other data science
packages.

pandas pd
pandas provides methods and classes for tabular and time-series
data.

sklearn sk

scikit-learn provides implementations of many machine
learning algorithms with a uniform syntax for preprocessing
data, specifying models, fitting models with cross-validation,
and assessing models.

matplotlib.pyplot plt
Matplotlib allows the creation of data visualizations in Python.
The functions mostly expect NumPy arrays.

seaborn sns
seaborn also allows the creation of data visualizations but works
better with pandas DataFrame objects.

scipy.stats sp.stats
SciPy provides algorithms and functions for computing
problems that arise in science, engineering and statistics.
scipy.stats provides the functions for statistics.

statsmodels sm
statsmodels adds functionality to Python to estimate many
different kinds of statistical models, make inferences from those
models, and explore data.

12.5 NumPy
The NumPy (pronounced "Num-pie") package provides tools for mathematical computations in 
Python. NumPy is used frequently in data science and statistical analysis. NumPy is also frequently 
used with other data science packages, such as pandas and Matplotlib. 

NumPy arrays
The NumPy array data type is called ndarray, where "nd" stands for N-dimensional and N can be 
any number of dimensions.

A zero-dimensional array consists of a scalar object. Ex: 2.

A one-dimensional array consists of a container of scalars. Ex: [2, 4, 6, 8].

A two-dimensional array consists of a container of containers of scalars. 2D arrays have rows 
and columns.

https://numpy.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://matplotlib.org/
https://seaborn.pydata.org/index.html
https://scipy.org/
https://www.statsmodels.org/stable/index.html


Week 12 Apr 1  Apr 5 4

An N-dimensional array has N levels of nested containers. At each level, all containers must have 
the same number of elements. The shapeof an array is a tuple of the lengths of each of the array's 
dimensions. The size of an array is the total number of elements in an array. Ex: The shape of the 2D 
array [ [2, 4, 6, 8], [12, 14, 16, 18] ] is (2, 4) and the size of the array is 8.

Function/Method Description Example

array(object)

Returns an
ndarray based on
a given object,
like a list.

# Creates a 1D (1, 4)

array based off of a

list array1D =

np.array([1, 2, 3, 4])

# Creates a 2D (2, 2)

array based off of 2

lists array2D =

np.array([ [1, 2], [3,

4] ])

zeros(arrShape)one(arrayShape)full(arrayShape,

value)

Returns an
ndarray of a
specified shape
filled with zeros,
ones, or a
specified value.

# Creates a 2D (2, 2)

array filled with 6s#

[ [6, 6], [6, 6]

] array_6fill =

np.full((2, 2), 6)

array[row_index, col_index]

Returns the
element located at
indices
[row_index,
col_index].

array2D = np.array([

[1, 2], [3, 4] ])

# Returns 3: Element

located at second row

(index 1), first

column (index

0) elem_1_0 =

array2D[1, 0]

delete(ndarray, index, axis) Returns a new
ndarray with a
row or column
deleted from the
given ndarray.
Deletes the row or
column indicated
by the index. If
axis = 0, delete

array2D = np.array([

[1, 2], [3, 4] ])

# Returns a new 1D

(1x2) array with the

second row (index 1,

axis 0) ([3,4])

removed# [1,

2] new_a1D =

np.delete(array2D, 1,

axis=0)



Week 12 Apr 1  Apr 5 5

Function/Method Description Example

row. If axis = 1,
delete column.

ndarray.sort(axis)

Sorts an ndarray
in place in
ascending order
along an axis. If
axis=None, the
array is flattened
into a 1D array,
and then sorted. If
no argument is
passed, sorting
occurs along the
last axis (axis 1
for a 2D array).

my_array =

np.array([2, 4, 1, 3])

# Sorts a 1D array in

place# [1, 2, 3,

4] my_array.sort()

ndarray.ravel()

Returns a
flattened (1D)
version of the
given ndarray.

array_7 = np.array([

[7, 7], [7, 7] ])

# Returns a new

flattened 1D (1, 4)

version of a 2D (2, 2)

array# [7, 7, 7,

7] array_7flat =

array_7.ravel()

ndarray.reshape(new_shape)

Returns a new
ndarray
containing the
elements of the
given ndarray
with a new shape.

array1D = np.array([1,

2, 3, 4])

# Returns a new

reshaped 2D (2, 2)

version of a 2D (1, 4)

array# [ [1, 2], [3,

4] ] a_reshaped =

array1D.reshape((2,2))

ndarray.transpose()

Returns the
transpose of an
ndarray.

# Returns a new

transposed version of

a_reshaped# [[1, 3],

[2,

4]] array1_transposed

=

a_reshaped.transpose()



Week 12 Apr 1  Apr 5 6

12.6 pandas

Introduction to pandas and dataframes
pandas is a Python package that stores and manipulates 2-dimensional datasets.

pandas represents datasets with a dataframe object, of data type DataFrame, which consists of rows 
and columns. A dataframe's columns contain the features of the dataset and the rows contain the 
number of instances.

A dataframe's row labels are known as the index and column labels are known as the columns. 
Usually, row labels are automatically generated integers, and column labels are manually specified 
strings. All values in a column must have the same type, but different columns may have different 
types.

A pandas DataFrame is similar to an NumPy array because both:

Are indexed, ordered, and mutable containers

Represent data in multiple dimensions, or axes

Have a shape attribute, a tuple of integers representing the number of elements along each axis

However, dataframes and arrays also differ in several ways:

Dataframes are always two-dimensional. Arrays may have zero, one, or many dimensions.

Different dataframe columns may have different types. All array values have the same type.

Dataframe labels may be integers, strings, or other types. Array indices are integers only.

Subsetting data involves choosing specific rows and columns from a dataframe according to labels, 
indices, and slices (a range between 2 indices).

12.7 Matplotlib
Matplotlib is a package used to create static, dynamic, and interactive plots. Seaborn, another 
common data visualization package used primarily for statistical graphs, is based on Matplotlib.

Figures can be created using the pyplot library, a state-based interface to the Matplotlib package that 
uses a syntax similar to MATLAB. Each line of code adds a plot element to the figure one at a time, 
while preserving previously added elements in the figure.

Other useful functions in the pyplot library include:

figure() : Creates a new figure for a plot to appear in. Ex: plt.figure(figsize=[4,5])



Week 12 Apr 1  Apr 5 7

show() : Displays the figure and all the objects the figure contains. Ex: plt.show()

savefig(fname) : Saves the figure in the current working directory with the filename fname. 
Ex: plt.savefig(line_plot.png)



Pandas Notes 1

🐼
Pandas Notes
The command import pandas as pd  imports the pandas modules and shortens the module to 
‘pd.’

.loc[ ] method
1. Single label:

df.loc['row_label'] # Selects one row or one cell.

2. List of labels:

df.loc[['row1_label', 'row2_label']] # Selects multiple row or c

3. Slicing:

df.loc['row1_label':'row2_label'] # Select a range of labels.

4. Boolean array:

df.loc[df['column_name'] > 5] # Select rows based on a condition

5. Conditional selection:

df.loc['row_label','column_name'] # Combine label-based selectio

Integer-based indexing is done using the .iloc( )  method. 

index method



Pandas Notes 2

df.index # returns a RangeIndex()

Setting an index

df = df.set_index('column_name') # Set a column as an index.

Returning an index

df = df.reset_index() # Resets index to integer values.

Series  objects
A Series  object has three attributes (in the scope of APS106): index , name , and data .

Modifying a column

df.loc[:, column_name] # Accesses a specific column, 

# which can be re-assigned to a new list or Series.

df = df.drop(['column1_name', 'column2_name'], axis="columns"]

# Drops the listed columns along the columns axis.

Utility Methods (needed for APS106)
Head

df.head() # Prints first 5 rows, can place an int argument as we

Tail

df.tail() # Prints last 5 rows, can place an int argument as wel

Maximum



Pandas Notes 3

df.max() # Returns the maximum value along a specified row/colum

Minimum

df.min() # Returns the minimum value along a specified row/colum

Mean

df.mean() # Returns the arithmetic mean along a column.

Value counting

df.loc[:, 'column_name'].value_counts()

# Counts the number of times each unique value occurs in a Serie

# Output is a series where the index is the unique values.

Unique

df.loc['column'].unique() # Returns a list of all the unique val

Sorting values

df.loc[:, 'column'].sort_values() # Sorts column in ascending or

df.sort_values(by='column', ascending='False') # In descending o

Changing value types

df.loc[:, 'column'].astype(int) # Converts values in column to i

String Methods (needed for APS106)
Uppercase/lowercase



Pandas Notes 4

df.loc[:, 'column'].str.upper() # Uppercases all values in colum

df.loc[:, 'column'].str.lower() # Lowercases all values in colum

Length

df.loc[:, 'column'].str.len() # Returns length of each string in

Starts with and ends with

df.loc[:, 'column'].str.startswith() # Returns list of Boolean v

Replace

df['column'] = df['column'].str.replace('original', 'new')

# Replaces every occurence of the original string with the new s


